Document Type
Article
Publication Date
7-19-2021
Abstract
We developed a spatially-tracked single neuron transcriptomics map of an intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used neuronal tracing to extensively map the spatial distribution of the subset of neurons that project to the SAN. RNA-seq of laser capture microdissected neurons revealed a distinct composition of RAGP neurons compared to the central nervous system and a surprising finding that cholinergic and catecholaminergic markers are coexpressed, suggesting multipotential phenotypes that can drive neuroplasticity within RAGP. High-throughput qPCR of hundreds of laser capture microdissected single neurons confirmed these findings and revealed a high dimensionality of neuromodulatory factors that contribute to dynamic control of the heart. Neuropeptide-receptor coexpression analysis revealed a combinatorial paracrine neuromodulatory network within RAGP informing follow-on studies on the vagal control of RAGP to regulate cardiac function in health and disease.
Recommended Citation
Moss, Alison; Robbins, Shaina; Achanta, Sirisha; Kuttippurathu, Lakshmi; Turick, Scott; Nieves, Sean; Hanna, Peter; Smith, Elizabeth H.; Hoover, Donald B.; Chen, Jin; Cheng, Zixi Jack; Ardell, Jeffrey L.; Shivkumar, Kalyanam; Schwaber, James S.; and Vadigepalli, Rajanikanth, "A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system." (2021). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 324.
https://jdc.jefferson.edu/pacbfp/324
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
PubMed ID
34337356
Language
English
Comments
This article is the authors’ final published version in iScience, Volume 24, Issue 7, July 2021, Article number 102713.
The published version is available at https://doi.org/10.1016/j.isci.2021.102713. Copyright © Moss et al.