Document Type
Article
Publication Date
12-24-2020
Abstract
The mitochondrial permeability transition pore (mPTP) is a channel that, when open, is responsible for a dramatic increase in the permeability of the mitochondrial inner membrane, a process known as the mitochondrial permeability transition (mPT). mPTP activation during Ca2+ dyshomeostasis and oxidative stress disrupts normal mitochondrial function and induces cell death. mPTP opening has been implicated as a critical event in many diseases, including hypoxic injuries, neurodegeneration, and diabetes. Discoveries of recent years indicate that mPTP demonstrates very complicated behavior and regulation, and depending on specific induction or stress conditions, it can function as a high-conductance pore, a small channel, or a non-specific membrane leak. The focus of this review is to summarize the literature on the electrophysiological properties of the mPTP and to evaluate the evidence that it has multiple molecular identities. This review also provides perspective on how an electrophysiological approach can be used to quantitatively investigate the biophysical properties of the mPTP under physiological, pharmacological, pathophysiological, and disease conditions.
Recommended Citation
Neginskaya, M. A.; Pavlov, E. V.; and Sheu, S.-S., "Electrophysiological properties of the mitochondrial permeability transition pores: Channel diversity and disease implication." (2020). Center for Translational Medicine Faculty Papers. Paper 79.
https://jdc.jefferson.edu/transmedfp/79
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
PubMed ID
33359307
Language
English
Comments
This article is the author’s final published version in Biochimica et Biophysica Acta - Bioenergetics, Volume 1862, Issue 3, March 2021, Article number 148357.
The published version is available at https://doi.org/10.1016/j.bbabio.2020.148357. Copyright © Neginskaya et al.