Document Type
Article
Publication Date
11-22-2022
Abstract
Alcoholic hepatitis (AH) is the most severe form of alcoholic liver disease for which there is no efficacious treatment aiding most patients. AH manifests differently in individuals, with some patients showing debilitating symptoms more so than others. Previous studies showed significant metabolic dysregulation associated with AH. Therefore, we sought to analyze how the activity of metabolic pathways differed in the liver of patients with varying degrees of AH severity. We utilized a genome-scale metabolic modeling approach that allowed for integration of a generic human cellular metabolic model with specific RNA-seq data corresponding to healthy and multiple liver disease states to predict the metabolic fluxes within each disease state. Additionally, we performed a systems-level analysis of the transcriptomic data and predicted metabolic flux data to identify the regulatory and functional differences in liver metabolism with increasing severity of AH. Our results provide unique insights into the sequential dysregulation of the solute transport mechanisms underlying the glutathione metabolic pathway with increasing AH disease severity. We propose targeting of the solute transporters in the glutathione pathway to mimic the flux activity of the healthy liver state as a potential therapeutic intervention for AH.
Recommended Citation
Manchel, Alexandra; Mahadevan, Radhakrishnan; Bataller, Ramon; Hoek, Jan B.; and Vadigepalli, Rajanikanth, "Genome-Scale Metabolic Modeling Reveals Sequential Dysregulation of Glutathione Metabolism in Livers from Patients with Alcoholic Hepatitis" (2022). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 376.
https://jdc.jefferson.edu/pacbfp/376
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
PubMed ID
36557195
Language
English
- Usage
- Downloads: 54
- Abstract Views: 2
Comments
This article is the author’s final published version in Metabolites, Volume 12, Issue 12, November 2022, Article number 1157.
The published version is available at https://doi.org/10.3390/metabo12121157. Copyright © Manchel et al.