Document Type
Article
Publication Date
2-1-2016
Abstract
Mechanisms regulating how groups of cells are signaled to move collectively from their original site and invade surrounding matrix are poorly understood. Here we develop a clinically relevant ex vivo injury invasion model to determine whether cells involved in directing wound healing have invasive function and whether they can act as leader cells to direct movement of a wounded epithelium through a three-dimensional (3D) extracellular matrix (ECM) environment. Similar to cancer invasion, we found that the injured cells invade into the ECM as cords, involving heterotypical cell-cell interactions. Mesenchymal cells with properties of activated repair cells that typically locate to a wound edge are present in leader positions at the front of ZO-1-rich invading cords of cells, where they extend vimentin intermediate filament-enriched protrusions into the 3D ECM. Injury-induced invasion depends on both vimentin cytoskeletal function and MMP-2/9 matrix remodeling, because inhibiting either of these suppressed invasion. Potential push and pull forces at the tips of the invading cords were revealed by time-lapse imaging, which showed cells actively extending and retracting protrusions into the ECM. This 3D injury invasion model can be used to investigate mechanisms of leader cell-directed invasion and understand how mechanisms of wound healing are hijacked to cause disease.
Recommended Citation
Bleaken, Brigid M; Menko, A Sue; and Walker, Janice, "Cells activated for wound repair have the potential to direct collective invasion of an epithelium." (2016). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 181.
https://jdc.jefferson.edu/pacbfp/181
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
PubMed ID
26658613
Comments
This article has been peer reviewed. It was published in: Molecular Biology of the Cell.
Volume 27, Issue 3, 1 February 2016, Pages 451-465.
The published version is available at DOI: 10.1091/mbc.E15-09-0615
Copyright © © 2016 Bleaken et al.
This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc -sa/3.0).