Document Type
Article
Publication Date
11-22-2004
Abstract
Mitochondria are dynamic organelles in cells. The control of mitochondrial motility by signaling mechanisms and the significance of rapid changes in motility remains elusive. In cardiac myoblasts, mitochondria were observed close to the microtubular array and displayed both short- and long-range movements along microtubules. By clamping cytoplasmic [Ca2+] ([Ca2+]c) at various levels, mitochondrial motility was found to be regulated by Ca2+ in the physiological range. Maximal movement was obtained at resting [Ca2+]c with complete arrest at 1-2 microM. Movement was fully recovered by returning to resting [Ca2+]c, and inhibition could be repeated with no apparent desensitization. The inositol 1,4,5-trisphosphate- or ryanodine receptor-mediated [Ca2+]c signal also induced a decrease in mitochondrial motility. This decrease followed the spatial and temporal pattern of the [Ca2+]c signal. Diminished mitochondrial motility in the region of the [Ca2+]c rise promotes recruitment of mitochondria to enhance local Ca2+ buffering and energy supply. This mechanism may provide a novel homeostatic circuit in calcium signaling.
Recommended Citation
Yi, Muqing; Weaver, David; and Hajnóczky, György, "Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit." (2004). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 129.
https://jdc.jefferson.edu/pacbfp/129
PubMed ID
15545319
Comments
This article has been peer reviewed. It is the authors' final version prior to publication in Journal of Cell Biology.
Volume 167, Issue 4, November 2004, Pages 661-72.
The published version is available at DOI: 10.1083/jcb.200406038. Copyright © Rockefeller Press.