Document Type

Article

Publication Date

3-3-2022

Comments

This article is the author’s final published version in Aging, Volume 14, Issue 5, March 2022, Pages 2113 - 2130.

The published version is available at https://doi.org/10.18632/aging.203930. Copyright © Zhao et al.

Abstract

Arsenic exposure is associated with lung cancer. Angiogenesis is essential for tumor development. However, the role and mechanism of human vascular endothelial cells in tumor growth and angiogenesis induced by arsenic-transformed bronchial epithelial (As-T) cells remain to be elucidated. In this study, we found that endothelial cells significantly increased As-T cell-induced tumor growth compared to those induced by As-T cells alone. To understand the molecular mechanism, we found that endothelial cells co-cultured with As-T cells or cultured in conditioned medium (CM) prepared from As-T cells showed much higher cell migration, proliferation, and tube formation compared to those co-cultured with BEAS-2B (B2B) cells or cultured in CM from B2B. We identified that higher levels of intracellular interleukin 8 (IL-8) were secreted by As-T cells, which activated IL-8/IL-8R signaling to promote endothelial cells migration and tube formation. IL-8 silencing and knockout (KO) in As-T cells, or IL-8 neutralizing antibody dramatically suppressed endothelial cell proliferation, migration, tube formation in vitro, and tumor growth and angiogenesis in vivo, suggesting a key role of IL-8 in As-T cells to induce angiogenesis via a paracrine effect. Finally, blocking of IL-8 receptors C-X-C chemokine receptor type 1 (CXCR1) and CXCR2 with neutralizing antibodies and chemical inhibitors inhibited tube formation, indicating that IL-8Rs on endothelial cells are necessary for As-T cell-induced angiogenesis. Overall, this study reveals an important molecular mechanism of arsenic-induced carcinogenesis, and suggests a new option to prevent and treat arsenic-induced angiogenesis.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

PubMed ID

35241635

Language

English

Share

COinS