Document Type
Article
Publication Date
4-19-2022
Abstract
Most cancer deaths result from progression of therapy resistant disease, yet our understanding of this phenotype is limited. Cancer therapies generate stress signals that act upon mitochondria to initiate apoptosis. Mitochondria isolated from neuroblastoma cells were exposed to tBid or Bim, death effectors activated by therapeutic stress. Multidrug-resistant tumor cells obtained from children at relapse had markedly attenuated Bak and Bax oligomerization and cytochrome c release (surrogates for apoptotic commitment) in comparison with patient-matched tumor cells obtained at diagnosis. Electron microscopy identified reduced ER-mitochondria-associated membranes (MAMs; ER-mitochondria contacts, ERMCs) in therapy-resistant cells, and genetically or biochemically reducing MAMs in therapy-sensitive tumors phenocopied resistance. MAMs serve as platforms to transfer Ca2+ and bioactive lipids to mitochondria. Reduced Ca2+ transfer was found in some but not all resistant cells, and inhibiting transfer did not attenuate apoptotic signaling. In contrast, reduced ceramide synthesis and transfer was common to resistant cells and its inhibition induced stress resistance. We identify ER-mitochondria-associated membranes as physiologic regulators of apoptosis via ceramide transfer and uncover a previously unrecognized mechanism for cancer multidrug resistance.
Recommended Citation
Çoku, Jorida; Booth, David M.; Skoda, Jan; Pedrotty, Madison C; Vogel, Jennifer; Liu, Kangning; Vu, Annette; Carpenter, Erica L; Ye, Jamie C; Chen, Michelle A; Dunbar, Peter; Scadden, Elizabeth; Yun, Taekyung D; Nakamaru-Ogiso, Eiko; Area-Gomez, Estela; Li, Yimei; Goldsmith, Kelly C; Reynolds, C Patrick; Hajnóczky, György; and Hogarty, Michael D, "Reduced ER-mitochondria connectivity promotes neuroblastoma multidrug resistance." (2022). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 364.
https://jdc.jefferson.edu/pacbfp/364
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
PubMed ID
35211994
Language
English
Comments
This is the final published version of the article from The EMBO Journal, 2022 Apr 19;41(8):e108272.
The article can also be accessed on the journal's website: https://doi.org/10.15252/embj.2021108272
Copyright. The Authors.