Document Type

Article

Publication Date

8-1-2022

Comments

This article is the author's final published version in Translational Andrology and Urology, Volume 11, Issue 8, August 2022, Pages 1210 - 1221.

The published version is available at https://doi.org/10.21037/tau-22-195.

Copyright © 2022 Translational Andrology and Urology. All rights reserved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0.

Abstract

Background: Penile prosthesis (PP) is a gold standard for treatment of erectile dysfunction given its reliability and efficacy. Infection remains the most feared complication of prosthetic surgery, which usually results in device removal, and places a significant economic burden on the healthcare system. While biofilms have shown to support the persistence of microorganisms, the degree by which this matrix is truly pathogenic remains unknown given its high prevalence even in asymptomatic patients. We aim to review and summarize the current literature pertaining to biofilm formation in the setting of PP surgeries in clinically infected and non-infected cases.

Methods: Searches were performed in the MEDLINE online database through PubMed using a combination of keywords “penile prosthetic” OR “penile prosthesis” OR “penile implant” AND “biofilm” OR “revision” OR “removal” OR “infection” OR “explant”. Eleven articles met inclusion criteria. There were only three studies that explicitly listed the number of biofilms identified in their cohort, but we also included eight articles that mentioned swabbing and culturing of any bacterial biofilm during revision procedures for both clinically infected and non-infected implants.

Results: Infected PP yielded a 11–100% rate of biofilm presence, while non-infected PP yielded a 3–70% rate of biofilm presence. Time to reoperation from initial PP placement were also largely variable, ranging from 2 weeks to over 2 years. Coagulase-negative staphylococcus (i.e., Staphylococcus epidermidis) were the most commonly reported organisms among non-infected implants, however, newer studies have identified a change towards more virulent organisms.

Conclusions: Since the advent of PP surgery, diabetes control, revision washout protocols and antibiotic-impregnated devices have led to an overall decrease in biofilm formation and infectious complications. There is an overall paradigm shift in microbial profiles with more virulent organisms, such as Escherichia coli, Pseudomonas aeruginosa, Enterococcus species, and even fungal species beginning to replace the more common coagulase-negative staphylococcal species, especially in clinically infected implants. Additional studies are necessary to define the significance of bacterial presence in biofilms using impactful technologies such as next-generation sequencing. Currently, preliminary and experimental biofilm-control strategies are also underway to further address this clinical issue.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

PubMed ID

36092843

Language

English

Included in

Urology Commons

Share

COinS