Document Type
Article
Publication Date
7-26-2023
Abstract
The PTH-related peptide(1-34) analog, abaloparatide (ABL), is the second anabolic drug available for the treatment of osteoporosis. Previous research demonstrated that ABL had a potent anabolic effect but caused hypercalcemia at a significantly lower rate. However, the mechanism by which ABL maintains the stability of blood calcium levels remains poorly understood. Our in vivo data showed that ABL treatment (40 µg/kg/day for 7 days) significantly increased rat blood level of 1,25-dihydroxyvitamin D [1,25-(OH)2D] without raising the blood calcium value. ABL also significantly augmented the carboxylated osteocalcin (Gla-Ocn) in the blood and bone that is synthesized by osteoblasts, and increased noncarboxylated Ocn, which is released from the bone matrix to the circulation because of osteoclast activation. The in vitro data showed that ABL (10 nM for 24 hours) had little direct effects on 1,25-(OH)2D synthesis and Gla-Ocn formation in nonrenal cells (rat osteoblast-like cells). However, ABL significantly promoted both 1,25-(OH)2D and Gla-Ocn formation when 25-hydroxyvitamin D, the substrate of 1α-hydroxylase, was added to the cells. Thus, the increased 1,25-(OH)2D levels in rats treated by ABL result in high levels of Gla-Ocn and transient calcium increase in the circulation. Gla-Ocn then mediates calcium ions in the extracellular fluid at bone sites to bind to hydroxyapatite at bone surfaces. This regulation by Gla-Ocn at least, in part, maintains the stability of blood calcium levels during ABL treatment. We conclude that the signaling pathway of ABL/1,25-(OH)2D/Gla-Ocn contributes to calcium homeostasis and may help understand the mechanism of ABL for osteoporosis therapy.
Recommended Citation
Yang, Yanmei; Tseng, Wei-Ju Louis; and Wang, Bin, "Abaloparatide Maintains Normal Rat Blood Calcium Level in Part Via 1,25-Dihydroxyvitamin D/osteocalcin Signaling Pathway" (2023). Center for Translational Medicine Faculty Papers. Paper 111.
https://jdc.jefferson.edu/transmedfp/111
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
PubMed ID
37493045
Language
English
Comments
This article is the author's final published version in Endocrinology, Volume 164, Issue 9, September 2023, Article number bqad117.
The published version is available at https://doi.org/10.1210/endocr/bqad117. Copyright © The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society.