Document Type
Article
Publication Date
5-25-2023
Abstract
Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While HSI was originally developed for remote sensing applications, modern uses include agriculture, historical document authentication, and medicine. HSI has also shown great utility in fluorescence microscopy. However, traditional fluorescence microscopy HSI systems have suffered from limited signal strength due to the need to filter or disperse the emitted light across many spectral bands. We have previously demonstrated that sampling the fluorescence excitation spectrum may provide an alternative approach with improved signal strength. Here, we report on the use of excitation-scanning HSI for dynamic cell signaling studies—in this case, the study of the second messenger Ca2+. Time-lapse excitation-scanning HSI data of Ca2+ signals in human airway smooth muscle cells (HASMCs) were acquired and analyzed using four spectral analysis algorithms: linear unmixing (LU), spectral angle mapper (SAM), constrained energy minimization (CEM), and matched filter (MF), and the performances were compared. Results indicate that LU and MF provided similar linear responses to increasing Ca2+ and could both be effectively used for excitation-scanning HSI. A theoretical sensitivity framework was used to enable the filtering of analyzed images to reject pixels with signals below a minimum detectable limit. The results indicated that subtle kinetic features might be revealed through pixel filtering. Overall, the results suggest that excitation-scanning HSI can be employed for kinetic measurements of cell signals or other dynamic cellular events and that the selection of an appropriate analysis algorithm and pixel filtering may aid in the extraction of quantitative signal traces. These approaches may be especially helpful for cases where the signal of interest is masked by strong cellular autofluorescence or other competing signals.
Recommended Citation
Parker, Marina; Annamdevula, Naga S.; Pleshinger, Donald; Ijaz, Zara; Jalkh, Josephine; Penn, Raymond; Deshpande, Deepak; Rich, Thomas C.; and Leavesley, Silas J., "Comparing Performance of Spectral Image Analysis Approaches for Detection of Cellular Signals in Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy" (2023). Center for Translational Medicine Faculty Papers. Paper 109.
https://jdc.jefferson.edu/transmedfp/109
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Supplemental Video S1.avi (65472 kB)
Supplemental Video S2.avi (10299 kB)
Supplemental Video S3.avi (1324 kB)
Supplemental Video S4.avi (1034 kB)
Supplemental Video S5.avi (2545 kB)
Supplemental Video S6.avi (1400 kB)
PubMed ID
37370573
Language
English
Comments
This article is the author's final published version in Bioengineering, Volume 10, Issue 6, 2023, Article number 642.
The published version is available at https://doi.org/10.3390/bioengineering10060642. Copyright © 2023 by the authors. Licensee MDPI, Basel, Switzerland.