Document Type

Article

Publication Date

8-21-2025

Comments

This article is the author’s final published version in Diagnostics, Volume 15, Issue 16, 2025, Article number 2112.

The published version is available at https://doi.org/10.3390/diagnostics15162112. Copyright © 2025 by the authors.

Abstract

Background: Differentiating acute kidney injury (AKI) from chronic kidney disease (CKD) in children remains a critical unmet need due to the limitations of current clinical and biochemical markers. Conventional ultrasound lacks the sensitivity to discern subtle parenchymal alterations. This study explores the application of ultrasound radiomics—a novel, non-invasive, and quantitative image analysis method—for distinguishing AKI from CKD in pediatric patients. Methods: In this retrospective cross-sectional pilot study, kidney ultrasound images were obtained from 31 pediatric subjects: 8 with oliguric AKI, 14 with CKD, and 9 healthy controls. Renal parenchyma was manually segmented, and 124 advanced texture features were extracted using the open-source ©PyFeats. Features encompassed multiple categories (e.g., GLCM, GLSZM, WP). Statistical comparisons evaluated intergroup differences. Principal Component Analysis identified the top 10 most informative features, which were used to train supervised machine learning models. Model performance used five-fold cross-validation. Results: Radiomic analysis revealed significant intergroup differences (p < 0.05). CKD cases exhibited increased echogenicity and heterogeneity, particularly in GLCM and GLSZM features, consistent with chronic fibrosis. AKI cases displayed more homogeneous texture, likely reflecting edema or acute inflammation. While echogenicity separated diseased from healthy kidneys, it lacked specificity between AKI and CKD. Among ML models, XGBoost achieved the highest macro-averaged F1 score (0.90), followed closely by SVM and Random Forest, demonstrating strong classification performance. Conclusions: Radiomics-based texture analysis of grayscale ultrasound images effectively differentiated AKI from CKD in this pilot study, offering a promising, non-invasive imaging biomarker for pediatric kidney disease. These preliminary findings justify prospective validation in larger, multicenter cohorts.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Language

English

Share

COinS