Document Type
Article
Publication Date
7-30-2024
Abstract
Background: Inferior Vena Cava (IVC) filters have become an advantageous treatment modality for patients with venous thromboembolism. As the use of these filters continues to grow, it is imperative for providers to appropriately educate patients in a comprehensive yet understandable manner. Likewise, generative artificial intelligence models are a growing tool in patient education, but there is little understanding of the readability of these tools on IVC filters. Methods: This study aimed to determine the Flesch Reading Ease (FRE), Flesch–Kincaid, and Gunning Fog readability of IVC Filter patient educational materials generated by these artificial intelligence models. Results: The ChatGPT cohort had the highest mean Gunning Fog score at 17.76 ± 1.62 and the lowest at 11.58 ± 1.55 among the Copilot cohort. The difference between groups for Flesch Reading Ease scores (p = 8.70408 × 10−8) was found to be statistically significant albeit with priori power found to be low at 0.392. Conclusions: The results of this study indicate that the answers generated by the Microsoft Copilot cohort offers a greater degree of readability compared to ChatGPT cohort regarding IVC filters. Nevertheless, the mean Flesch–Kincaid readability for both cohorts does not meet the recommended U.S. grade reading levels.
Recommended Citation
Singh, Som; Jamal, Aleena; Qureshi, Farah; Zaidi, Rohma; and Qureshi, Fawad, "Leveraging Generative Artificial Intelligence Models in Patient Education on Inferior Vena Cava Filters" (2024). SKMC Student Presentations and Publications. Paper 14.
https://jdc.jefferson.edu/skmcstudentworks/14
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Language
English
Included in
Artificial Intelligence and Robotics Commons, Equipment and Supplies Commons, Psychological Phenomena and Processes Commons
Comments
This article is the author's final published version in Clinics and Practice, Volume 14, Issue 4, August 2024, Pages 1507 - 1514.
The published version is available at https://doi.org/10.3390/clinpract14040121.
Copyright © 2024 by the authors