Document Type

Article

Publication Date

8-1-2017

Comments

This article has been peer reviewed. It is the authors' final version prior to publication in American Journal of Clinical Oncology: Cancer Clinical Trials, Volume 40, Issue 4, August 2017, Pages 342-347.

The published version is available at https://doi.org/10.1097/COC.0000000000000181. Copyright © Wolters Kluwer Health, Inc.

Abstract

PURPOSE/OBJECTIVES: Radium-223 is a first-in-class radiopharmaceutical recently approved for the treatment of castration-resistant prostate cancer in patients with symptomatic bone metastases. Initial studies investigating Radium-223 primarily used nonsteroidal first-generation antiandrogens. Since that time, newer antiandrogen therapies have demonstrated improved survival in patients with castration-resistant prostate cancer. It has been suggested that the rational combination of these newly approved agents with Radium-223 may lead to improved response rates and clinical outcomes. Currently, there is lack of information regarding the safety of concurrent administration of these agents with radiopharmaceuticals. Here, we report on hematologic toxicity findings from our institution in patients receiving concurrent Radium-223 and next-generation antiandrogen therapies with either enzalutamide or abiraterone.

MATERIALS/METHODS: In a retrospective study, we analyzed patients who received Radium-223 as part of an early-access trial, and following FDA approval in May 2013, patients receiving Radium-223 as part of standard care. Radium-223 was given at standard dosing of 50 kBq/kg each month for 6 total cycles. Complete blood counts were performed before treatment monthly and following each injection. Blood counts from patients receiving Radium alone and concurrently with next-generation antiandrogens were compared. To date, 25 total patients were analyzed, with a median of 5 monthly doses received per patient. Fourteen patients received concurrent therapy during monthly Radium-223 with either enzalutamide (n=8) or abiraterone (n=6).

RESULTS: Six patients expired due to disease progression. Two patients discontinued treatment due to grade 3 myelosuppression. For patients receiving either Radium alone and with concurrent next-generation antiandrogen therapy, there did not appear to be any statistically significant differences between initial and nadir blood counts. Mean change from initial neutrophil count to nadir was 1.9×10/L in patients receiving Radium alone, versus 2.3×10/L in patients receiving concurrent therapy (P=0.77). Mean change from initial hemoglobin value to nadir was 1.5 g/L in patients receiving Radium alone, versus 1.8 g/L in patients receiving concurrent therapy (P=0.31). Mean change from initial platelet count to nadir was 52.3×10 cells/L in patients receiving Radium alone versus 70.6×10 cells/L in patients receiving concurrent therapy (P=0.39). Individual blood counts for each measured laboratory are included in the supplemental data. PSA was stable or decreased in 22% of patients receiving Radium alone versus 35% of patients receiving combination treatment (P=0.24).

CONCLUSIONS: Concurrent administration of Radium-223 and next-generation antiandrogen therapies appears to be well tolerated with similar toxicities to standard administration of Radium-223 alone. This particular cohort of patients represents a high-risk, heavily pretreated group of patients with advanced metastatic disease and significant marrow burden. Despite these risk factors, hematologic toxicity was modest and was in the range expected for this risk group based on previous trials. To date, this is the first study investigating the toxicity of combination treatment. Further studies investigating the safety and efficacy of combination treatments are warranted.

PubMed ID

25723740

Language

English

Share

COinS