Document Type

Article

Publication Date

March 2007

Comments

This article has been peer reviewed. It is the authors' final version prior to publication in the Journal of Biological Chemistry 282(24):17806-17815, June 15, 2007. The published version is available at http://www.jbc.org/cgi/content/full/282/24/17806; copyright © 2007 by The American Society for Biochemistry.

Abstract

Focal adhesions attach cultured cells to the extracellular matrix, and we found endogenous protein phosphatase-1alpha isoform (PP1alpha) localized in adhesions across the entire area of adherent fibroblasts. However, in fibroblasts migrating into a scrape wound or spreading after replating PP1alpha did not appear in adhesions near the leading edge but was recruited into other adhesions coincident in time and space with incorporation of tensin. Endogenous tensin and PP1alpha co-precipitated from cell lysates with isoform-specific PP1 antibodies. Chemical cross-linking of focal adhesion preparations with Lomant's reagent demonstrated molecular proximity of endogenous PP1alpha and tensin, whereas neither focal adhesion kinase nor vinculin was cross-linked and co-precipitated with PP1alpha, suggesting distinct spatial subdomains within adhesions. Transient expression of truncated tensin showed the N-terminal 360 residues, which comprise a protein-tyrosine phosphatase domain, alone were sufficient for isoform-selective co-precipitation of co-expressed PP1alpha. Human prostate cancer PC3 cells are deficient in tensin relative to fibroblasts and have fewer, mostly peripheral adhesions. Transient expression of green fluorescent protein tensin in these cancer cells induced formation of adhesions and recruited endogenous PP1alpha into those adhesions. Thus, the protein-tyrosine phosphatase domain of tensin exhibits isoform-specific association with PP1alpha in a restricted spatial region of adhesions that are formed during cell migration.

Included in

Oncology Commons

Share

COinS