Document Type
Article
Publication Date
6-9-2017
Abstract
Esophageal squamous cell carcinoma (ESCC) in humans is a deadly disease associated with dietary zinc (Zn)-deficiency. In the rat esophagus, Zn-deficiency induces cell proliferation, alters mRNA and microRNA gene expression, and promotes ESCC. We investigated whether Zn-deficiency alters cell metabolism by evaluating metabolomic profiles of esophageal epithelia from Zn-deficient and replenished rats vs sufficient rats, using untargeted gas chromatography time-of-flight mass spectrometry (n = 8/group). The Zn-deficient proliferative esophagus exhibits a distinct metabolic profile with glucose down 153-fold and lactic acid up 1.7-fold (P < 0.0001), indicating aerobic glycolysis (the "Warburg effect"), a hallmark of cancer cells. Zn-replenishment rapidly increases glucose content, restores deregulated metabolites to control levels, and reverses the hyperplastic phenotype. Integration of metabolomics and our reported transcriptomic data for this tissue unveils a link between glucose down-regulation and overexpression of HK2, an enzyme that catalyzes the first step of glycolysis and is overexpressed in cancer cells. Searching our published microRNA profile, we find that the tumor-suppressor miR-143, a negative regulator of HK2, is down-regulated in Zn-deficient esophagus. Using in situ hybridization and immunohistochemical analysis, the inverse correlation between miR-143 down-regulation and HK2 overexpression is documented in hyperplastic Zndeficient esophagus, archived ESCC-bearing Zn-deficient esophagus, and human ESCC tissues. Thus, to sustain uncontrolled cell proliferation, Zn-deficiency reprograms glucose metabolism by modulating expression of miR-143 and its target HK2. Our work provides new insight into critical roles of Zn in ESCC development and prevention. © Fong et al.
Recommended Citation
Fong, Louise Y.; Jing, Ruiyan; Smalley, Karl; Taccioli, Cristian; Fahrmann, Johannes; Barupal, Dinesh K.; Alder, Hansjuerg; Farber, John L.; Fiehn, Oliver; and Croce, Carlo M., "Integration of metabolomics, transcriptomics, and microRNA expression profiling reveals a miR-143-HK2-glucose network underlying zinc-deficiency-associated esophageal neoplasia" (2017). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 222.
https://jdc.jefferson.edu/pacbfp/222
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Comments
This article has been peer reviewed. It is the author’s final published version in Oncotarget Volume 8, Issue 47, June 2017, Pages 81910-81925
The published version is available at DOI: 10.18632/oncotarget.18434. Copyright © Fong et al.