Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3β.
Document Type
Article
Publication Date
11-1-2012
Abstract
Disturbed sleep-wake cycle and circadian rhythmicity are associated with cancer, but the underlying mechanisms are unknown. Employing a tissue-isolated human breast xenograft tumor nude rat model, we observed that glycogen synthase kinase 3β (GSK3β), an enzyme critical in metabolism and cell proliferation/survival, exhibits a circadian rhythm of phosphorylation in human breast tumors. Exposure to light-at-night suppresses the nocturnal pineal melatonin synthesis, disrupting the circadian rhythm of GSK3β phosphorylation. Melatonin activates GSK3β by inhibiting the serine-threonine kinase Akt phosphorylation, inducing β-catenin degradation and inhibiting epithelial-to-mesenchymal transition, a fundamental process underlying cancer metastasis. Thus, chronic circadian disruption by light-at-night via occupational exposure or age-related sleep disturbances may contribute to cancer incidence and the metastatic spread of breast cancer by inhibiting GSK3β activity and driving epithelial-to-mesenchymal transition in breast cancer patients.
Recommended Citation
Mao, Lulu; Dauchy, Robert T; Blask, David E; Slakey, Lauren M; Xiang, Shulin; Yuan, Lin; Dauchy, Erin M; Shan, Bin; Brainard, George C; Hanifin, John P; Frasch, Tripp; Duplessis, Tamika T; and Hill, Steven M, "Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3β." (2012). Department of Neurology Faculty Papers. Paper 68.
https://jdc.jefferson.edu/neurologyfp/68
PubMed ID
23002080