Document Type
Article
Publication Date
1-22-2021
Abstract
For implantable neural interfaces, functional/clinical outcomes are challenged by limitations in specificity and stability of inorganic microelectrodes. A biological intermediary between microelectrical devices and the brain may improve specificity and longevity through (i) natural synaptic integration with deep neural circuitry, (ii) accessibility on the brain surface, and (iii) optogenetic manipulation for targeted, light-based readout/control. Accordingly, we have developed implantable "living electrodes," living cortical neurons, and axonal tracts protected within soft hydrogel cylinders, for optobiological monitoring/modulation of brain activity. Here, we demonstrate fabrication, rapid axonal outgrowth, reproducible cytoarchitecture, and simultaneous optical stimulation and recording of these tissue engineered constructs in vitro. We also present their transplantation, survival, integration, and optical recording in rat cortex as an in vivo proof of concept for this neural interface paradigm. The creation and characterization of these functional, optically controllable living electrodes are critical steps in developing a new class of optobiological tools for neural interfacing.
Recommended Citation
Adewole, Dayo O.; Struzyna, Laura A.; Burrell, Justin C.; Harris, James P.; Nemes, Ashley D.; Petrov, Dmitriy; Kraft, Reuben H.; Chen, H. Isaac; Serruya, Mijail D.; Wolf, John A.; and Cullen, D. Kacy, "Development of optically controlled "living electrodes" with long-projecting axon tracts for a synaptic brain-machine interface." (2021). Department of Neurology Faculty Papers. Paper 234.
https://jdc.jefferson.edu/neurologyfp/234
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
PubMed ID
33523957
Language
English
Comments
This article is the author’s final published version in Science Advances, Volume 7, Issue 4, January 2021, Article number eaay5347.
The published version is available at https://doi.org/10.1126/sciadv.aay5347. Copyright © Adewole et al.