Document Type

Article

Publication Date

July 2000

Comments

Final author's version prior to publication. This article has been peer reviewed. It was originally published in Proceedings of the National Academy of Sciences of the United States of America (PNAS), 97(14): 8015-8020, July 5, 2000. Copyright is retained by the National Academy of Sciences of the USA.

Abstract

Emerging evidence suggests that transforming growth factor-(TGF-β) is an important mediator of diabetic nephropathy. We showed previously that short-term treatment with a neutralizing monoclonal anti-TGF-antibody (αT) in streptozotocin-diabetic mice prevents early changes of renal hypertrophy and increased matrix mRNA. To establish that overactivity of the renal TGF-system mediates the functional and structural changes of the more advanced stages of nephropathy, we tested whether chronic administration of αT prevents renal insufficiency and glomerulosclerosis in the db/db mouse, model of type 2 diabetes that develops overt nephropathy. Diabetic db/db mice and nondiabetic db/m littermates were treated intraperitoneally with α or control IgG, 300 µg three times per week for 8 wk. Treatment with αT, but not with IgG, significantly decreased the plasma TGF-β1 concentration without decreasing the plasma glucose concentration. The IgG-treated db/db mice developed albuminuria, renal insufficiency, and glomerular mesangial matrix expansion associated with increased renal mRNAs encoding α 1(IV) collagen and fibronectin. On the other hand, treatment with α completely prevented the increase in plasma creatinine concentration, the decrease in urinary creatinine clearance, and the expansion of mesangial matrix in db/db mice. The increase in renal matrix mRNAs was substantially attenuated, but the excretion of urinary albumin factored for creatinine clearance was not significantly affected by α treatment. We conclude that chronic inhibition of the biologic actions of TGF-with neutralizing monoclonal antibody in db/db mice prevents the glomerulosclerosis and renal insufficiency resulting from type diabetes.

Share

COinS