Document Type


Publication Date



This is the author's final version of the article published in Experimental Neurology, 2020, Volume 334, 11346

The final published article can be found at

Copyright © 2020 Elsevier Inc.


A major portion of individuals affected by traumatic spinal cord injury (SCI) experience one or more types of chronic neuropathic pain (NP), which is often intractable to currently available treatments. The availability of reliable behavioral assays in pre-clinical models of SCI-induced NP is therefore critical to assess the efficacy of new potential therapies. Commonly used assays to evaluate NP-related behavior in rodents, such as Hargreaves thermal and von Frey mechanical testing, rely on the withdrawal response to an evoked stimulus. However, other assays that test spontaneous/non-evoked NP-related behavior or supraspinal aspects of NP would be highly useful for a more comprehensive assessment of NP following SCI. The Mouse Grimace Scale (MGS) is a tool to assess spontaneous, supraspinal pain-like behaviors in mice; however, the assay has not been characterized in a mouse model of SCI-induced chronic NP, despite the critical importance of mouse genetics as an experimental tool. We found that beginning 2 weeks after cervical contusion, SCI mice exhibited increased facial grimace features compared to laminectomy-only control mice, and this grimace phenotype persisted to the chronic time point of 5 weeks post-injury. We also found a significant relationship between facial grimace score and the evoked forepaw withdrawal response in both the Hargreaves and von Frey tests at 5 weeks post-injury when both laminectomy-only and SCI mice were included in the analysis. However, within only the SCI group, there was no correlation between grimace score and Hargreaves or von Frey responses. These results indicate both that facial grimace analysis can be used as an assay of spontaneous NP-related behavior in the mouse model of SCI and that the information provided by the MGS may be different than that provided by evoked tests of sensory function.



Included in

Neurosciences Commons