Document Type

Article

Publication Date

7-1-2020

Comments

This is the final published version of the article from PLoS computational Biology, 2020, Volume 16, Issue 7: e1007504.

The published version can also be found at http://doi.org/10.1371/journal.pcbi.1007504

Copyright, Ghazi et. al.

Abstract

NGS studies have uncovered an ever-growing catalog of human variation while leaving an enormous gap between observed variation and experimental characterization of variant function. High-throughput screens powered by NGS have greatly increased the rate of variant functionalization, but the development of comprehensive statistical methods to analyze screen data has lagged. In the massively parallel reporter assay (MPRA), short barcodes are counted by sequencing DNA libraries transfected into cells and the cell's output RNA in order to simultaneously measure the shifts in transcription induced by thousands of genetic variants. These counts present many statistical challenges, including overdispersion, depth dependence, and uncertain DNA concentrations. So far, the statistical methods used have been rudimentary, employing transformations on count level data and disregarding experimental and technical structure while failing to quantify uncertainty in the statistical model. We have developed an extensive framework for the analysis of NGS functionalization screens available as an R package called malacoda (available from github.com/andrewGhazi/malacoda). Our software implements a probabilistic, fully Bayesian model of screen data. The model uses the negative binomial distribution with gamma priors to model sequencing counts while accounting for effects from input library preparation and sequencing depth. The method leverages the high-throughput nature of the assay to estimate the priors empirically. External annotations such as ENCODE data or DeepSea predictions can also be incorporated to obtain more informative priors-a transformative capability for data integration. The package also includes quality control and utility functions, including automated barcode counting and visualization methods. To validate our method, we analyzed several datasets using malacoda and alternative MPRA analysis methods. These data include experiments from the literature, simulated assays, and primary MPRA data. We also used luciferase assays to experimentally validate several hits from our primary data, as well as variants for which the various methods disagree and variants detectable only with the aid of external annotations.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Language

English

Included in

Hematology Commons

Share

COinS