Document Type


Publication Date



This article has been peer reviewed. It was published in: Molecular Biology of the Cell.
Volume 25, Issue 13, 1 July 2014, Pages 2105-2115.
The published version is available at DOI: 10.1091/mbc.E13-09-0547

Copyright © 2014 Xu, Jiang, et al.


The G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated GPCRs at the plasma membrane (PM). Here GRK5/GRK4 chimeras and point mutations in GRK5 identify a short sequence within the regulator of G protein signaling (RGS) domain in GRK5 that is critical for GRK5 PM localization. This region of the RGS domain of GRK5 coincides with a region of GRK6 and GRK1 shown to form a hydrophobic dimeric interface (HDI) in crystal structures. Coimmunoprecipitation (coIP) and acceptor photobleaching fluorescence resonance energy transfer assays show that expressed GRK5 self-associates in cells, whereas GRK5-M165E/F166E (GRK5-EE), containing hydrophilic mutations in the HDI region of the RGS domain, displays greatly decreased coIP interactions. Both forcing dimerization of GRK5-EE, via fusion to leucine zipper motifs, and appending an extra C-terminal membrane-binding region to GRK5-EE (GRK5-EE-CT) recover PM localization. In addition, GRK5-EE displays a decreased ability to inhibit PAR1-induced calcium release compared with GRK5 wild type (wt). In contrast, PM-localized GRK5-EE-CaaX (appending a C-terminal prenylation and polybasic motif from K-ras) or GRK5-EE-CT shows comparable ability to GRK5 wt to inhibit PAR1-induced calcium release. The results suggest a novel model in which GRK5 dimerization is important for its plasma membrane localization and function.

PubMed ID




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.