Document Type
Article
Publication Date
12-12-2018
Abstract
Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly. © 2018, Bird et al.
Recommended Citation
Bird, Jeremy G; Basu, Urmimala; Kuster, David; Ramachandran, Aparna; Grudzien-Nogalska, Ewa; Towheed, Atif; Wallace, Douglas C.; Kiledjian, Megerditch; Temiakov, Dmitry; Patel, Smita S.; Ebright, Richard H.; and Nickels, Bryce E., "Highly efficient 5' capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase" (2018). Department of Biochemistry and Molecular Biology Faculty Papers. Paper 144.
https://jdc.jefferson.edu/bmpfp/144
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
PubMed ID
30526856
Language
English
Comments
This article has been peer reviewed. It is the author’s final published version in eLife, Volume 7, Article number e42179.
The published version is available at https://doi.org/10.7554/eLife.42179. Copyright © Bird et al.