Document Type

Article

Publication Date

7-30-2023

Comments

This article is the author's final published version in Brain Sciences, Volume 13, Issue 8, August 2023, Article number 1148.

The published version is available at https://doi.org/10.3390/brainsci13081148.

Copyright © 2023 by the authors. Licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

Spaceflight associated neuro-ocular syndrome (SANS) is a unique phenomenon that has been observed in astronauts who have undergone long-duration spaceflight (LDSF). The syndrome is characterized by distinct imaging and clinical findings including optic disc edema, hyperopic refractive shift, posterior globe flattening, and choroidal folds. SANS serves a large barrier to planetary spaceflight such as a mission to Mars and has been noted by the National Aeronautics and Space Administration (NASA) as a high risk based on its likelihood to occur and its severity to human health and mission performance. While it is a large barrier to future spaceflight, the underlying etiology of SANS is not well understood. Current ophthalmic imaging onboard the International Space Station (ISS) has provided further insights into SANS. However, the spaceflight environment presents with unique challenges and limitations to further understand this microgravity-induced phenomenon. The advent of artificial intelligence (AI) has revolutionized the field of imaging in ophthalmology, particularly in detection and monitoring. In this manuscript, we describe the current hypothesized pathophysiology of SANS and the medical diagnostic limitations during spaceflight to further understand its pathogenesis. We then introduce and describe various AI frameworks that can be applied to ophthalmic imaging onboard the ISS to further understand SANS including supervised/unsupervised learning, generative adversarial networks, and transfer learning. We conclude by describing current research in this area to further understand SANS with the goal of enabling deeper insights into SANS and safer spaceflight for future missions.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Language

English

Share

COinS