Document Type

Article

Publication Date

12-1-2017

Comments

This article has been peer reviewed. It is the author’s final published version in Scientific Reports

Volume 7, Issue 1, December 2017, Article number 6143.

The published version is available at DOI: 10.1038/s41598-017-06580-7. Copyright © Wang et al.

Abstract

We study the spatial distribution of natural blind spot location (NBSL) and its impact on perimetry. Pattern deviation (PD) values of 11,449 reliable visual fields (VFs) that are defined as clinically unaffected based on summary indices were extracted from 11,449 glaucoma patients. We modeled NBSL distribution using a two-dimensional non-linear regression approach and correlated NBSL with spherical equivalent (SE). Additionally, we compared PD values of groups with longer and shorter distances than median, and larger and smaller angles than median between NBSL and fixation. Mean and standard deviation of horizontal and vertical NBSL were 14.33° ± 1.37° and -2.06° ± 1.27°, respectively. SE decreased with increasing NBSL (correlation: r = -0.14, p < 0.001). For NBSL distances longer than median distance (14.32°), average PD values decreased in the upper central (average difference for significant points (ADSP): -0.18 dB) and increased in the lower nasal VF region (ADSP: 0.14 dB). For angles in the direction of upper hemifield relative to the median angle (-8.13°), PD values decreased in lower nasal (ADSP: -0.11 dB) and increased in upper temporal VF areas (ADSP: 0.19 dB). In conclusion, we demonstrate that NBSL has a systematic effect on the spatial distribution of VF sensitivity.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

PubMed ID

28733615

Included in

Ophthalmology Commons

Share

COinS