Document Type

Article

Publication Date

6-10-2023

Comments

This article is the author's final published version in Biomedicines, Volume 11, Issue 6, 2023, Article number 1684.

The published version is available at https://doi.org/10.3390/biomedicines11061684. Copyright © 2023 by the authors. Licensee MDPI, Basel, Switzerland.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the 3rd leading cause of cancer mortality in the United States. Hypoxic and hypercapnic tumor microenvironments have been suggested to promote tumor aggressiveness. The objective of this study was to evaluate the association between chronic obstructive pulmonary disease (COPD) and oncologic survival outcomes in patients with early-stage PDAC and periampullary cancers. In this case-control study, patients who underwent a pancreaticoduodenectomy during 2014–2021 were assessed. Demographic, perioperative, histologic, and oncologic data were collected. A total of 503 PDAC and periampullary adenocarcinoma patients were identified, 257 males and 246 females, with a mean age of 68.1 (±9.8) years and a mean pre-operative BMI of 26.6 (±4.7) kg/m2. Fifty-two percent of patients (N = 262) reported a history of smoking. A total of 42 patients (8.3%) had COPD. The average resected tumor size was 2.9 ± 1.4 cm and 65% of the specimens (N = 329) were positive for lymph-node involvement. Kaplan–Meier analysis showed that COPD was associated with worse overall and disease-specific survival (p < 0.05). Cox regression analysis showed COPD to be an independent prognostic factor (HR = 1.5, 95% CI 1.0–2.3, p = 0.039) along with margin status, lymphovascular invasion, and perineural invasion (p < 0.05 each). A 1:3 nearest neighbor propensity score matching was also employed and revealed COPD to be an independent risk factor for overall and disease-specific survival (OR 1.8 and OR 1.6, respectively; p < 0.05 each). These findings may support the rationale posed by in vitro laboratory studies, suggesting an important impact of hypoxic and hypercapnic tumor respiratory microenvironments in promoting therapy resistance in cancer.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Language

English

Share

COinS