Document Type


Publication Date



This article has been peer reviewed. It is the authors' final version prior to publication in Cancer Research Published Online First August 13, 2010. The published version is available at Doi: 10.1158/0008-5472.CAN-10-0900 . Copyright © American Association for Cancer Research


Caveolin-1 (CAV1) is the main structural component of Caveolae which are plasma membrane invaginations that participate in vesicular trafficking and signal transduction events. Although, evidence has recently accumulated describing the function of CAV1 in several cancer types, its role in melanoma tumor formation and progression remains poorly explored. Here, by employing B16F10 melanoma cells as an experimental system, we directly explore the function of CAV1 in melanoma tumor growth and metastasis. We first show that CAV1 expression promotes proliferation while it suppresses migration and invasion of B16F10 cells in vitro. When orthotopically implanted in the skin of mice, B16F10 cells expressing CAV1 form tumors that are similar in size to their control counterpart. An experimental metastasis assay demonstrates that CAV1 expression suppresses the ability of B16F10 cells to form lung metastases in C57Bl/6 syngeneic mice. Additionally, CAV1 protein and mRNA levels are found to be significantly reduced in human metastatic melanoma cell lines and human tissue from metastatic lesions. Finally, we demonstrate that following integrin activation, B16F10 cells expressing CAV1 display reduced expression levels and activity of FAK and Src proteins. CAV1 expression also markedly reduces the expression levels of beta3 Integrin in B16F10 melanoma cells. In summary, our findings provide experimental evidence that CAV1 may function as an antimetastatic gene in malignant melanoma.

PubMed ID


Included in

Oncology Commons