Document Type


Publication Date



This article is the author's final published version in Computational and Structural Biotechnology Journal, Volume 21, 2023, Pages 5601 - 5608.

The published version is available at

Copyright © 2023 The Authors


Lung adenocarcinoma (ADC) is the most common non-small cell lung cancer. Surgical resection is the primary treatment for early-stage lung ADC while lung-sparing surgery is an alternative for non-aggressive cases. Identifying histopathologic subtypes before surgery helps determine the optimal surgical approach. Predominantly solid or micropapillary (MIP) subtypes are aggressive and associated with a higher likelihood of recurrence and metastasis and lower survival rates. This study aims to non-invasively identify these aggressive subtypes using preoperative 18F-FDG PET/CT and diagnostic CT radiomics analysis. We retrospectively studied 119 patients with stage I lung ADC and tumors ≤ 2 cm, where 23 had aggressive subtypes (18 solid and 5 MIPs). Out of 214 radiomic features from the PET/CT and CT scans and 14 clinical parameters, 78 significant features (3 CT and 75 PET features) were identified through univariate analysis and hierarchical clustering with minimized feature collinearity. A combination of Support Vector Machine classifier and Least Absolute Shrinkage and Selection Operator built predictive models. Ten iterations of 10-fold cross-validation (10 ×10-fold CV) evaluated the model. A pair of texture feature (PET GLCM Correlation) and shape feature (CT Sphericity) emerged as the best predictor. The radiomics model significantly outperformed the conventional predictor SUVmax (accuracy: 83.5% vs. 74.7%, p = 9e-9) and identified aggressive subtypes by evaluating FDG uptake in the tumor and tumor shape. It also demonstrated a high negative predictive value of 95.6% compared to SUVmax (88.2%, p = 2e-10). The proposed radiomics approach could reduce unnecessary extensive surgeries for non-aggressive subtype patients, improving surgical decision-making for early-stage lung ADC patients.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

PubMed ID