Document Type
Article
Publication Date
10-1-2025
Abstract
No abstract available
Recommended Citation
Kitamura, Felipe; Kline, Timothy; Warren, Daniel; Moy, Linda; Daneshjou, Roxana; Maleki, Farhad; Santos, Igor; Gichoya, Judy; Wiggins, Walter; Bialecki, Brian; O'Donnell, Kevin; Flanders, Adam E.; Morgan, Matt; Safdar, Nabile; Andriole, Katherine P.; Geis, Raym; Allen, Bibb; Dreyer, Keith; Lungren, Matt; Wood, Monica J.; Kohli, Marc; Langer, Steve; Shih, George; Farina, Eduardo; Kahn, Charles E.; Reiser, Ingrid; Giger, Maryellen; Wald, Christoph; Mongan, John; Cook, Tessa; and Tenenholtz, Neil, "Teaching AI for Radiology Applications: A Multisociety-Recommended Syllabus from the AAPM, ACR, RSNA, and SIIM" (2025). Department of Radiology Faculty Papers. Paper 188.
https://jdc.jefferson.edu/radiologyfp/188
Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
PubMed ID
41031949
Language
English


Comments
This article is the author's final published version in Radiology: Artificial Intelligence, Volume 7, Issue 6, November 2025, Article number e250137.
The published version is available at https://doi.org/10.1148/ryai.250137. Copyright © The Author(s) 2025.