Document Type
Article
Publication Date
2-28-2023
Abstract
Since its initial release in 2011, the Liver Imaging Reporting and Data System (LI-RADS) has evolved and expanded in scope. It started as a single algorithm for hepatocellular carcinoma (HCC) diagnosis with CT or MRI with extracellular contrast agents and has grown into a multialgorithm network covering all major liver imaging modalities and contexts of use. Furthermore, it has developed its own lexicon, report templates, and supplementary materials. This article highlights the major achievements of LI-RADS in the past 11 years, including adoption in clinical care and research across the globe, and complete unification of HCC diagnostic systems in the United States. Additionally, the authors discuss current gaps in knowledge, which include challenges in surveillance, diagnostic population definition, perceived complexity, limited sensitivity of LR-5 (definite HCC) category, management implications of indeterminate observations, challenges in reporting, and treatment response assessment following radiation-based therapies and systemic treatments. Finally, the authors discuss future directions, which will focus on mitigating the current challenges and incorporating advanced technologies. Tha authors envision that LI-RADS will ultimately transform into a probability-based system for diagnosis and prognostication of liver cancers that will integrate patient characteristics and quantitative imaging features, while accounting for imaging modality and contrast agent.
Recommended Citation
Chernyak, Victoria; Fowler, Kathryn J; Do, Richard K G; Kamaya, Aya; Kono, Yuko; Tang, An; Mitchell, Donald G.; Weinreb, Jeffrey; Santillan, Cynthia S; and Sirlin, Claude B, "LI-RADS: Looking Back, Looking Forward" (2023). Department of Radiology Faculty Papers. Paper 146.
https://jdc.jefferson.edu/radiologyfp/146
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
PubMed ID
36853182
Language
English
Comments
This article is the author's final published version in Radiology, Volume 307, Issue 1, 2023, Article number e222801.
The published version is available at https://doi.org10.1148/radiol.222801.
Copyright © 2023 by the Radiological Society of North America, Inc.