Document Type


Publication Date

September 2007


This article has been peer reviewed. It was published in Blood 111(2):905-914, 15 January 2008, and pre-published online as a Blood First Edition Paper on October 2, 2007. The published version is available at


Phosphatidylserine (PS)-positive erythrocytes adhere to endothelium and subendothelial matrix components. While thrombospondin mediates these inter-actions, it is unknown whether PS-associated erythrocyte-endothelial adhesion occurs in the absence of plasma ligands. Using ionophore-treated PS-expressing control HbAA erythrocytes, we demonstrate that PS-positive erythrocytes adhered to human lung microendothelial cells in the absence of plasma ligands, that this adhesion was enhanced following endothelial activation with IL-1alpha, TNF-alpha, LPS, hypoxia, and heme, and that this adhesive interaction was selective to erythrocyte PS. We next explored whether microendothelial cells express an adhesion receptor that recognizes cell surface-expressed PS (PSR) similar to that expressed on activated macrophages. We demonstrate constitutive expression of both PSR mRNA and protein that were up-regulated in a time-dependent manner following endothelial activation. While minimal PSR expression was noted on unstimulated cells, endothelial activation up-regulated PSR surface expression. In antibody-blocking studies, using PS-positive erythrocytes generated either artificially via ionophore treatment of control erythrocytes or from patients with sickle cell disease, we demonstrate that PSR was functional, supporting PS-mediated erythrocyte adhesion to activated endothelium. Our results demonstrate the existence of a novel functional adhesion receptor for PS on the microendothelium that is up-regulated by such pathologically relevant agonists as hypoxia, cytokines, and heme.