Document Type
Article
Publication Date
2-14-2023
Abstract
Antibiograms are cumulative reports of antimicrobial susceptibility results that are used to guide the selection of empirical antibiotic therapy. Although Clinical and Laboratory Standards Institute (CLSI) guidelines recommend including only organisms that have at least 30 isolates in an antibiogram, previous studies demonstrated that adherence to this recommendation is highly variable. This paper aims to model the impact of small sample sizes on expected levels of error in cumulative antibiograms by comparing percent susceptibility results for random samples to those of the larger, entire data set. The results demonstrate relatively high error rates when utilizing low numbers of isolates in cumulative antibiograms, and provide a discussion point for considering the appropriate number of isolates that could be utilized, and the impact of increasing isolate numbers by including multiple years of data.
Recommended Citation
Tran, Christian; Hargy, John; Hess, Bryan; and Pettengill, Matthew, "Estimated Impact of Low Isolate Numbers on the Reliability of Cumulative Antibiogram Data" (2023). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 381.
https://jdc.jefferson.edu/pacbfp/381
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
PubMed ID
36625572
Language
English
Comments
This article is the author’s final published version in Microbiology Spectrum, Volume 11, Issue 1, February 2023,
The published version is available at https://doi.org/10.1128/spectrum.03939-22. Copyright © Tran et al.