Document Type
Article
Publication Date
12-14-2019
Abstract
Deep brain stimulation (DBS) for Parkinson's disease (PD) is an established advanced therapy that produces therapeutic effects through high frequency stimulation. Although this therapeutic option leads to improved clinical outcomes, the mechanisms of the underlying efficacy of this treatment are not well understood. Therefore, investigation of DBS and its postoperative effects on brain architecture is of great interest. Diffusion weighted imaging (DWI) is an advanced imaging technique, which has the ability to estimate the structure of white matter fibers; however, clinical application of DWI after DBS implantation is challenging due to the strong susceptibility artifacts caused by implanted devices. This study aims to evaluate the feasibility of generating meaningful white matter reconstructions after DBS implantation; and to subsequently quantify the degree to which these tracts are affected by post-operative device-related artifacts. DWI was safely performed before and after implanting electrodes for DBS in 9 PD patients. Differences within each subject between pre- and post-implantation FA, MD, and RD values for 123 regions of interest (ROIs) were calculated. While differences were noted globally, they were larger in regions directly affected by the artifact. White matter tracts were generated from each ROI with probabilistic tractography, revealing significant differences in the reconstruction of several white matter structures after DBS. Tracts pertinent to PD, such as regions of the substantia nigra and nigrostriatal tracts, were largely unaffected. The aim of this study was to demonstrate the feasibility and clinical applicability of acquiring and processing DWI post-operatively in PD patients after DBS implantation. The presence of global differences provides an impetus for acquiring DWI shortly after implantation to establish a new baseline against which longitudinal changes in brain connectivity in DBS patients can be compared. Understanding that post-operative fiber tracking in patients is feasible on a clinically-relevant scale has significant implications for increasing our current understanding of the pathophysiology of movement disorders, and may provide insights into better defining the pathophysiology and therapeutic effects of DBS.
Recommended Citation
Muller, J.; Alizadeh, M.; Li, L.; Thalheimer, S.; Matias, C.; Tantawi, M.; Miao, J.; Silverman, M. D.; Zhang, V.; Yun, G.; Romo, V.; Mohamed, F. B.; and Wu, C., "Feasibility of diffusion and probabilistic white matter analysis in patients implanted with a deep brain stimulator." (2019). Department of Neurosurgery Faculty Papers. Paper 118.
https://jdc.jefferson.edu/neurosurgeryfp/118
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
PubMed ID
31901789
Language
English
Comments
This article is the author’s final published version in NeuroImage: Clinical, Volume 25, December 2019, Article number 102135.
The published version is available at https://doi.org/10.1016/j.nicl.2019.102135. Copyright © Muller et al.