Document Type


Publication Date



This article is the author’s final published version in NeuroImage: Clinical, Volume 38, March 2023, Article number 103387.

The published version is available at Copyright © Hinds et al.


Despite the effectiveness of surgical interventions for the treatment of intractable focal temporal lobe epilepsy (TLE), the substrates that support good outcomes are poorly understood. While algorithms have been developed for the prediction of either seizure or cognitive/psychiatric outcomes alone, no study has reported on the functional and structural architecture that supports joint outcomes. We measured key aspects of pre-surgical whole brain functional/structural network architecture and evaluated their ability to predict post-operative seizure control in combination with cognitive/psychiatric outcomes. Pre-surgically, we identified the intrinsic connectivity networks (ICNs) unique to each person through independent component analysis (ICA), and computed: (1) the spatial-temporal match between each person's ICA components and established, canonical ICNs, (2) the connectivity strength within each identified person-specific ICN, (3) the gray matter (GM) volume underlying the person-specific ICNs, and (4) the amount of variance not explained by the canonical ICNs for each person. Post-surgical seizure control and reliable change indices of change (for language [naming, phonemic fluency], verbal episodic memory, and depression) served as binary outcome responses in random forest (RF) models. The above functional and structural measures served as input predictors. Our empirically derived ICN-based measures customized to the individual showed that good joint seizure and cognitive/psychiatric outcomes depended upon higher levels of brain reserve (GM volume) in specific networks. In contrast, singular outcomes relied on systematic, idiosyncratic variance in the case of seizure control, and the weakened pre-surgical presence of functional ICNs that encompassed the ictal temporal lobe in the case of cognitive/psychiatric outcomes. Our data made clear that the ICNs differed in their propensity to provide reserve for adaptive outcomes, with some providing structural (brain), and others functional (cognitive) reserve. Our customized methodology demonstrated that when substantial unique, patient-specific ICNs are present prior to surgery there is a reliable association with poor post-surgical seizure control. These ICNs are idiosyncratic in that they did not match the canonical, normative ICNs and, therefore, could not be defined functionally, with their location likely varying by patient. This important finding suggested the level of highly individualized ICN's in the epileptic brain may signal the

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

PubMed ID




Included in

Neurology Commons