Document Type


Publication Date



This article has been peer reviewed. It is the author’s final published version in PLoS ONE, Volume 13, Issue 5, May 2018, Article number e0196559.

The published version is available at Copyright © Wermuth & Jimenez


Transforming growth factor-β (TGF-β) plays a crucial role in the pathogenesis of Systemic Sclerosis (SSc) and other fibrotic disorders. TGF-β-mediated c-Abl and Src kinase activation induces strong profibrotic cascade signaling. The purpose of this study was to test in vivo the antifibrotic activity of Bosutinib (SKI-606), a second generation c-Abl and Src kinase inhibitor, on TGF-β induced cutaneous and pulmonary fibrosis. For this purpose, we employed the TBRIcaCol1a2Cre transgenic mice expressing an inducible constitutively active TGF-β receptor 1 constitutively activated by Col1a promoter-mediated Cre recombinase. The mice were treated parenterally with 2.5, 5.0 or 10.0 mg/kg/day of Bosutinib for 42 days. Skin and lungs from control and Bosutinib-treated mice (n = 6 per group) were assessed by histopathology, measurement of tissue hydroxyproline content, PCR analysis of tissue fibrosis associated gene expression, and evidence of myofibroblast activation. Mice with constitutive TGF-β-1 signaling displayed severe cutaneous and pulmonary fibrosis. Bosutinib administration decreased collagen deposition and hydroxyproline content in the dermis and lungs in a dose-dependent manner. Bosutinib also reversed the marked increase in profibrotic and myofibroblast activation-associated gene expression. These results demonstrate that constitutive TGF-β-1-signaling-induced cutaneous and pulmonary fibrosis were abrogated in a dose-related manner following parenteral administration of the c-Abl and Src tyrosine kinase inhibitor, Bosutinib. These results indicate that Bosutinib may be a potential therapeutic agent for tissue fibrosis in SSc and other fibroproliferative disorders.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

PubMed ID