Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries.
Document Type
Article
Publication Date
5-1-2017
Abstract
Homozygous or compound heterozygous mutations in fibulin-4 (FBLN4) lead to autosomal recessive cutis laxa type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences of a human disease-causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers in a mouse model of ARCL1B. Fbln4E57K/E57K mice were hypertensive and developed arterial elongation, tortuosity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large conducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mesenteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly, where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question FBLN4's suggested role in mediating lysyl oxidase-elastin interactions. Future studies investigating tissuespecific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of elastic fiber assembly. 2017 © The Authors, some rights reserved.
Recommended Citation
Halabi, Carmen M.; Broekelmann, Thomas J.; Lin, Michelle; Lee, Vivian S.; Chu, Mon-Li; and Mecham, Robert P., "Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries." (2017). Department of Dermatology and Cutaneous Biology Faculty Papers. Paper 86.
https://jdc.jefferson.edu/dcbfp/86
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License
PubMed ID
28508064
Language
English
Comments
This article has been peer reviewed. It is the author’s final published version in Science Advances
Volume 3, Issue 5, May 2017, Article number e1602532.
The published version is available at https://doi.org/10.1126/sciadv.1602532. Copyright © Halabi et al.