Document Type

Article

Publication Date

6-19-2023

Comments

This article is the author's final published version in Cell Communication and Signaling, Volume 21, Issue 1, 2023, Article number 147.

The published version is available at https://doi.org/10.1186/s12964-023-01156-7.

Copyright © The Author(s) 2023.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Abstract

Fluoropyridine-based chemotherapy remains the most widely used treatment for colorectal cancer (CRC). In this study, we investigated the mechanism by which the natural product Scutellaria baicalensis (Huang Qin; HQ) and one of its main components baicalin enhanced 5-fluorouracil (5-FU) antitumor activity against CRC. Cell proliferation assays, cell cycle analysis, reverse-phase protein array (RPPA) analysis, immunoblot analysis, and qRT-PCR were performed to investigate the mechanism(s) of action of HQ and its active components on growth of CRC cells. HQ exhibited in vitro antiproliferative activity against drug resistant human CRC cells, against human and mouse CRC cells with different genetic backgrounds and normal human colon epithelial cells. In vivo animal models were used to document the antitumor activity of HQ and baicalin. The mechanism of growth inhibitory activity of HQ is due to inhibition of proliferative signaling pathways including the CDK-RB pathway. In addition, HQ enhanced the antitumor effects of 5-FU and capecitabine in vivo. Furthermore, we identified baicalin as an active component of HQ. The combination of baicalin and 5-FU demonstrated synergistic activity against 5-FU-resistant RKO-R10 cells. The combination significantly inhibited in vivo tumor growth greater than each treatment alone. RPPA results showed that the signaling pathway alterations in CRC cells were similar following HQ and baicalin treatment. Together, these results indicate that HQ and its component baicalin enhance the effect of 5-fluorouracil-based chemotherapy via inhibition of CDK-RB pathway. These findings may provide the rational basis for developing agents that can overcome the development of cellular drug resistance.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Figures.pptx (8267 kB)
Tables.pptx (49 kB)

PubMed ID

37337282

Language

English

Share

COinS