Document Type

Article

Publication Date

8-1-2011

Comments

This article has been peer reviewed. It is the authors' final version prior to publication in Arthritis and Rheumatism

Volume 63, Issue 8, August 2011, Pages 2473-2483.

The published version is available at DOI: 10.1002/art.30317. Copyright © American College of Rheumatology

Abstract

OBJECTIVE: The origin of the mesenchymal cells responsible for the intimal fibrosis in systemic sclerosis (SSc) has not been fully identified. The present study was undertaken to investigate whether subendothelial mesenchymal cells may emerge through transdifferentiation of endothelial cells (ECs) into myofibroblasts via endothelial-mesenchymal transition (EndoMT) in vitro and to explore the signaling pathways involved in this process.

METHODS: Primary mouse pulmonary ECs isolated by immunomagnetic methods with sequential anti-CD34 and anti-CD102 antibody selection were cultured in monolayers. Cell morphology and diacetylated low-density lipoprotein uptake assays confirmed their EC characteristics. The induction of EndoMT was assessed by determination of α-smooth muscle actin (α-SMA), type I collagen, and VE-cadherin expression, and the expression of the transcriptional repressor Snail-1 was analyzed. The signaling pathways involved were examined using small-molecule kinase inhibitors and RNA interference.

RESULTS: Transforming growth factor β1 (TGFβ1) induced α-SMA and type I collagen expression and inhibited VE-cadherin. These effects were mediated by a marked increase in Snail-1 expression and were abolished by treatment with either the c-Abl tyrosine kinase inhibitor imatinib mesylate or the protein kinase Cδ (PKCδ) inhibitor rottlerin. The inhibitory effects of imatinib mesylate and rottlerin were mediated by inhibition of phosphorylation of glycogen synthase kinase 3β at residue Ser(9). These observations were confirmed in experiments using small interfering RNA specific for c-Abl and PKCδ.

CONCLUSION: These results indicate that c-Abl and PKCδ are crucial for TGFβ-induced EndoMT and that imatinib mesylate and rottlerin or similar kinase inhibitor molecules may be effective therapeutic agents for SSc and other fibroproliferative vasculopathies in which EndoMT plays a pathogenetic role.

PubMed ID

21425122

Included in

Rheumatology Commons

Share

COinS