Document Type

Article

Publication Date

3-16-2012

Comments

This article has been peer reviewed and is published in Circulation Research.

Volume 110, Issue 6, 16 March 2012, Pages 831-840.

The published version is available at DOI: 10.1161/CIRCRESAHA.111.255158. © 2012 American Heart Association, Inc.

Abstract

RATIONALE: Abnormal behavior of the cardiac ryanodine receptor (RyR2) has been linked to cardiac arrhythmias and heart failure (HF) after myocardial infarction (MI). It has been proposed that protein kinase A (PKA) hyperphosphorylation of the RyR2 at a single residue, Ser-2808, is a critical mediator of RyR dysfunction, depressed cardiac performance, and HF after MI.

OBJECTIVE: We used a mouse model (RyRS2808A) in which PKA hyperphosphorylation of the RyR2 at Ser-2808 is prevented to determine whether loss of PKA phosphorylation at this site averts post MI cardiac pump dysfunction.

METHODS AND RESULTS: MI was induced in wild-type (WT) and S2808A mice. Myocyte and cardiac function were compared in WT and S2808A animals before and after MI. The effects of the PKA activator Isoproterenol (Iso) on L-type Ca(2+) current (I(CaL)), contractions, and [Ca(2+)](I) transients were also measured. Both WT and S2808A mice had depressed pump function after MI, and there were no differences between groups. MI size was also identical in both groups. L type Ca(2+) current, contractions, Ca(2+) transients, and SR Ca(2+) load were also not significantly different in WT versus S2808A myocytes either before or after MI. Iso effects on Ca(2+) current, contraction, Ca(2+) transients, and SR Ca(2+) load were identical in WT and S2808A myocytes before and after MI at both low and high concentrations.

CONCLUSIONS: These results strongly support the idea that PKA phosphorylation of RyR-S2808 is irrelevant to the development of cardiac dysfunction after MI, at least in the mice used in this study.

Included in

Cardiology Commons

Share

COinS