Abstract

Several imaging modalities are currently being used to obtain diagnostic information in patient with spinal cord injuries. Among them, magnetic resonance imaging, computed tomography myelography, and plain radiography are the most widely used. Magnetic resonance imaging or MRI is a non-invasive imaging method that uses magnetic fields and radio frequency (RF) waves and provides soft tissue contrast of the spinal cord and surrounding tissues within the spinal canal. On the other hand, computed tomography or CT is based on x-rays, to provide excellent bone contrast, and is the first line of diagnostic imaging performed following a traumatic injury in both adults and kids to evaluate for fractures and spinal subluxation. Subsequently, MRI is performed to evaluate for the presence of spinal cord compression, spinal cord edema and/or hemorrhage, epidural/subdural hemorrhage, prevertebral edema, and ligamentous injury. Although still not widely available, in addition to providing good structural information, MRI has evolved in the recent years to provide functional characteristics of the spinal cord. These include information such as diffusion of the water molecules within the spinal cord providing functional information of white matter based on diffusion tensor imaging (DTI), and neuronal activation sites within the gray matter of the spinal cord based on Blood oxygenation level dependant (BOLD) imaging. In our center at Jefferson we are utilizing these functional neuroimaging biomarkers to potentially help us to understand the mechanisms of spinal cord injury (SCI) as well as guide and track changes of new therapeutic procedures. In the following sections we will discuss the methodologies underlying these techniques.

Pages: 39-43.

Share

COinS