Document Type

Article

Publication Date

August 2006

Comments

This article has been peer-reviewed. It is the authors' final version prior to publication in Alcohol 39 (2006) 169-178. The published version is available at http://dx.doi.org/10.1016/j.alcohol.2006.08.006 Copyright is retained by Elsevier, Inc.

Abstract

Previously, we have demonstrated that chronic-alcohol exposure alters insulin-like growth factor 1 (IGF1) signaling in adult rat heart cells. This report examines the effects of alcohol in vitro on the expression of protein kinase C (PKC) alpha, delta, and epsilon using the embryonic heart cell line, H9c2, and how this may be linked to changes in IGF1 signal transduction. Western blot analyses of H9c2 protein preparations demonstrate that there are significant increases in the total protein levels of PKC delta and epsilon after 4 days exposure to alcohol, and similar increases were found after 2 and 6 days exposure. In addition, there was a significant increase in PKC delta and epsilon in the membranal fractions and a decrease in the cytosolic fractions. No change was found in the expression or activity levels for PKC alpha. Chronic-alcohol exposure (100 mM, 4 days) increased the basal tyrosine kinase activity of the IGF1 receptor (IGF1R), and altered its rate of activation. Chronic-alcohol exposure also reduced the rate of Erk1/Erk2 activation by IGF1. Chronic alcohol blocked the proliferative effects of IGF1 on cell growth and reduced cell viability both in the presence and absence of IGF1, and this alcohol-induced reduction in cell viability was blocked using siRNA to inhibit PKC delta. In addition, a reduction in the amount of myosin light chain 2 was found in the alcohol-exposed cells. In conclusion, chronic alcohol alters PKC delta and epsilon expression and activity, and suppresses the IGF1 signaling pathway in embryonic heart cell culture. Blockage of PKC delta expression using siRNA inhibits the suppressive effects of alcohol on cell viability.

Share

COinS