Document Type


Publication Date



This article has been peer reviewed. It is the author’s final published version in International Journal of Molecular Medicine, Volume 43, Issue 3, March 2019, Pages 1395-1405.

The published version is available at Copyright © Yang et al.


Neuromyelitis optica (NMO) is a refractory autoimmune inflammatory disease of the central nervous system without an effective cure. Autologous bone marrow‑derived mesenchymal stem cells (BM‑MSCs) are considered to be promising therapeutic agents for this disease due to their potential regenerative, immune regulatory and neurotrophic effects. However, little is known about the cytological features of BM‑MSCs from patients with NMO, which may influence any therapeutic effects. The present study aimed to compare the proliferation, differentiation and senescence of BM‑MSCs from patients with NMO with that of age‑ and sex‑matched healthy subjects. It was revealed that there were no significant differences in terms of cell morphology or differentiation capacities in the BM‑MSCs from the patients with NMO. However, in comparison with healthy controls, BM‑MSCs derived from the Patients with NMO exhibited a decreased proliferation rate, in addition to a decreased expression of several cell cycle‑promoting and proliferation‑associated genes. Furthermore, the cell death rate increased in BM‑MSCs from patients under normal culture conditions and an assessment of the gene expression profile further confirmed that the BM‑MSCs from patients with NMO were more vulnerable to senescence. Platelet‑derived growth factor (PDGF), as a major mitotic stimulatory factor for MSCs and a potent therapeutic cytokine in demyelinating disease, was able to overcome the decreased proliferation rate and increased senescence defects in BM‑MSCs from the patients with NMO. Taken together, the results from the present study have enabled the proposition of the possibility of combining the application of autologous BM‑MSCs and PDGF for refractory and severe patients with NMO in order to elicit improved therapeutic effects, or, at the least, to include PDGF as a necessary and standard growth factor in the current in vitro formula for the culture of NMO patient‑derived BM‑MSCs.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

PubMed ID




Included in

Neurology Commons