Pathogenicity determinants of rabies virus and their function in the pathogenesis of rabies

Rojjanaporn Pulmanausahakul, Thomas Jefferson University

Abstract

Attenuated tissue culture-adapted and natural street rabies virus (RV) strains differ greatly in their neuroinvasiveness. To identify the elements responsible for the ability of an RV to enter the CNS from a peripheral site and to cause lethal neurological disease, we constructed a full-length cDNA clone of silver-haired bat-associated RV (SHBRV) strain 18 and exchanged the genes encoding RV proteins and genomic sequences of this highly neuroinvasive RV strain with those of a highly attenuated nonneuroinvasive RV vaccine strain (SN0). Analysis of the recombinant RV (SB0), which was recovered from SHBRV-18 cDNA, indicated that this RV is phenotypically indistinguishable from WT SHBRV-18. Characterization of the chimeric viruses revealed that in addition to the RV glycoprotein, which plays a predominant role in the ability of an RV to invade the CNS from a peripheral site, viral elements such as the trailer sequence, the RV polymerase, and the pseudogene contribute to RV neuroinvasiveness. Analyses also revealed that neuroinvasiveness of an RV correlates inversely with the time necessary for internalization of RV virions and with the capacity of the virus to grow in neuroblastoma cells. While the glycoprotein (G) of rabies virus (RV) is known to play a predominant role in the pathogenesis of rabies, the function of the RV matrix protein (M) in RV pathogenicity is not completely clear. To further investigate the role of these proteins in viral pathogenicity, we constructed chimeric recombinant viruses by exchanging the G and M genes of the attenuated SN strain with those of the highly pathogenic SB strain. Infection of mice with these chimeric viruses revealed a significant increase in the pathogenicity of SN parental strain bearing the RV G from the pathogenic SB strain. Moreover, the pathogenicity was further increased when both the G and M proteins from SB were introduced into SN. Interestingly, replacement of the G or M or both in SN by the corresponding genes of SB was associated with a significant decrease in the rate of viral replication and viral RNA synthesis. In addition, a chimeric SN virus bearing both the M and G genes from SB exhibited more efficient cell-to-cell spread than a chimeric SN virus in which only the G was replaced. Together these data indicate that both the G and M proteins play an important role in RV pathogenesis by regulating virus replication and facilitating cell-to-cell spread.

Subject Area

Virology

Recommended Citation

Pulmanausahakul, Rojjanaporn, "Pathogenicity determinants of rabies virus and their function in the pathogenesis of rabies" (2008). ETD Collection for Thomas Jefferson University. AAI3390438.
https://jdc.jefferson.edu/dissertations/AAI3390438

Share

COinS