Document Type


Publication Date



This article has been peer reviewed and is published in BMC Gastroenterology Volume 3, 20 February 2003, Article number 3 The published version is available at DOI: 10.1186/1471-230X-3-3. Copyright © BioMed Central Ltd.


BACKGROUND: Enhanced expression of MAdCAM-1 (mucosal addressin cell adhesion molecule-1) is associated with the onset and progression of inflammatory bowel disease. The clinical significance of elevated MAdCAM-1 expression is supported by studies showing that immunoneutralization of MAdCAM-1, or its ligands reduce inflammation and mucosal damage in models of colitis. Interleukin-10 (IL-10) is an endogenous anti-inflammatory and immunomodulatory cytokine that has been shown to prevent inflammation and injury in several animal studies, however clinical IL-10 treatment remains insufficient because of difficulties in the route of IL-10 administration and its biological half-life. Here, we examined the ability of introducing an IL-10 expression vector into endothelial cultures to reduce responses to a proinflammatory cytokine, TNF-alpha

METHODS: A human IL-10 expression vector was transfected into high endothelial venular ('HEV') cells (SVEC4-10); we then examined TNF-alpha induced lymphocyte adhesion to lymphatic endothelial cells and TNF-alpha induced expression of MAdCAM-1 and compared these responses to control monolayers.

RESULTS: Transfection of the IL-10 vector into endothelial cultures significantly reduced TNF-alpha induced, MAdCAM-1 dependent lymphocyte adhesion (compared to non-transfected cells). IL-10 transfected endothelial cells expressed less than half (46 +/- 6.6%) of the MAdCAM-1 induced by TNF-alpha (set as 100%) in non-transfected (control) cells.

CONCLUSION: Our results suggest that gene therapy of the gut microvasculature with IL-10 vectors may be useful in the clinical treatment of IBD.

PubMed ID