Winter 2018

Advanced Magnetic Resonance Imaging in Glioblastoma: A Review

Gaurav Shukla
Thomas Jefferson University, gaurav.shukla@jefferson.edu

G. S. Alexander
Thomas Jefferson University

Spyridon Bakas
University of Pennsylvania

Rahul Nikam
Thomas Jefferson University, rahul.nikam@jefferson.edu

Kiran Talekar
Thomas Jefferson University, kiran.talekar@jefferson.edu

See next page for additional authors

Follow this and additional works at: https://jdc.jefferson.edu/jhnj
Let us know how access to this document benefits you

Recommended Citation
Shukla, Gaurav; Alexander, G. S.; Bakas, Spyridon; Nikam, Rahul; Talekar, Kiran; Palmer, Joshua; and Shi, Wenyin (2018) "Advanced Magnetic Resonance Imaging in Glioblastoma: A Review," *JHN Journal*: Vol. 13 : Iss. 1 , Article 5.
Available at: https://jdc.jefferson.edu/jhnj/vol13/iss1/5

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in JHN Journal by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Advanced Magnetic Resonance Imaging in Glioblastoma: A Review

Authors
Gaurav Shukla, G. S. Alexander, Spyridon Bakas, Rahul Nikam, Kiran Talekar, Joshua Palmer, and Wenyin Shi

This review article is available in JHN Journal: https://jdc.jefferson.edu/jhnj/vol13/iss1/5
Advanced Magnetic Resonance Imaging in Glioblastoma: A Review

Gaurav Shukla, MD1,2; G.S. Alexander, BS1; Spyridon Bakas, PhD2,3; Rahul Nikam, MD4; Kiran Talekar, MD4; Joshua Palmer, MD5; Wenyin Shi, MD1

1Department of Radiation Oncology, Thomas Jefferson University, Sidney Kimmel Cancer Center at Jefferson, Philadelphia, PA
2Department of Radiology, University of Pennsylvania, Philadelphia, PA
3Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA
4Department of Radiology, Thomas Jefferson University, Philadelphia, PA
5Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH

INTRODUCTION

In 2017, it is estimated that 26,070 patients will be diagnosed with a malignant primary brain tumor in the United States, with more than half having the diagnosis of glioblastoma (GBM). Magnetic resonance imaging (MRI) is a widely utilized examination in the diagnosis and post-treatment management of patients with glioblastoma; standard modalities available from any clinical MRI scanner, including T1, T2, T2-FLAIR, and T1-contrast-enhanced (T1CE) sequences, provide critical clinical information. In the last decade, advanced imaging modalities are increasingly utilized to further characterize glioblastomas. These include multi-parametric MRI sequences, such as dynamic contrast enhancement (DCE), dynamic susceptibility contrast (DSC), diffusion tensor imaging (DTI), functional imaging, and spectroscopy (MRS), to further characterize glioblastomas, and significant efforts are ongoing to implement these advanced imaging modalities into improved clinical workflows and personalized therapy approaches. A contemporary review of standard and advanced MR imaging in clinical neuro-oncologic practice is presented.

Initial diagnosis and surgical management

Most patients with glioblastoma undergo computed tomography of the brain upon initial presentation. Once a mass is identified and hemorrhage is excluded, a contrast-enhanced MRI is typically ordered, with standard T1, T2, FLAIR, and contrast-enhanced T1 (T1CE) sequences. Many institutions will also capture gradient echo and diffusion sequences. Maximal safe debulking surgery is recommended as the initial standard of care. Neurosurgeons will often utilize high-resolution MRI (0.5 – 1.2mm slice thickness) for surgical planning and intraoperative guidance, as well as to make the determination of how aggressively to resect based on risk of toxicity to nearby eloquent regions. Standard imaging also can identify other important characteristics of the mass in situ, including the amount of necrosis, compression of the surrounding normal tissue, and midline deviation.

A recent meta-analysis of over 40,000 glioblastoma patients demonstrated that gross-total resection was associated with improved survival as compared to subtotal resection. Historically, the determination of gross-total resection was made in the operating room by the neurosurgeon. However, in the modern era, the practice of obtaining a post-operative contrast-enhanced MRI within 24–48 hours of surgery has become routine after publication of a study showing that radiological determination of the extent of resection via MRI had prognostic significance. Several series have attempted to quantify a threshold value for the extent of resection as a guide for neurosurgeons, utilizing the amount or enhancing tumor present in the preoperative and post-operative T1CE images. These series report thresholds ranging from 70% to 100%3-9, with the caveats that they were obtained retrospectively. To date, no formal threshold is recommended other than “maximal safe resection” as mentioned previously.

Standard preoperative images can be analyzed for macroscopic shape and location features that are associated with improved survival,10-13 providing potential biomarkers that may be utilized in stratifying patients in clinical trials.

Advanced MR imaging sequences have utility in the preoperative domain as well. Functional imaging (fMRI) has been particularly useful in preoperative surgical planning in cases where tumors or their resection may disrupt eloquent areas. Many patients who were once felt to be unresectable due to uncertain risk of neurologic compromise are now candidates for more aggressive resection after functional mapping. Diffusion tensor imaging (DTI) generates rich white matter tractography images which may guide neurosurgical planning and can help distinguish between post-operative vascular damage and residual enhancing tumor. Advanced MR imaging may be helpful in preoperative diagnosis18 of malignant lesions. Imaging features extracted from standard and advanced preoperative MR sequences can predict survival, molecular subtype, and mutational status in glioblastoma, potentially enhancing the set of imaging biomarkers available to clinicians.

Post-operative imaging and radiation planning

After maximal safe resection, which is evaluated on immediate post-operative MRI, the standard of care for patients with glioblastoma is chemoradiation with concurrent temozolomide, after the results of a large randomized Phase III trial. Typically, chemoradiation begins 3-6 weeks after surgery to allow...
Figure 1. Axial CT image at the level of basal ganglia demonstrates a large heterogeneous mass in the right frontal lobe with mass effect on the right lateral ventricle and leftward shift of midline. Ct, computed tomography.

Figure 2. Axial FLAIR weighted image at the level of basal ganglia demonstrates heterogeneous mass centered in the right frontal lobe and basal ganglia with surrounding infiltrating signal abnormality 'FLAIR envelope' which extends medially across the corpus callosum posteriorly in the insular region. The 'FLAIR envelope' is typically a manifestation of combination of tumor infiltration and edema. There is associated mass effect on the right ventricle and leftward midline shift. FLAIR, fluid-attenuated inversion recovery.

Figure 3. Axial gradient echo (GRE) image depicts multiple foci of hypointense signal 'susceptibility artifacts' within the right frontal mass compatible with intra-tumoral blood products.

Figure 4. Post gadolinium based contrast administration T1 weighted axial image (T1CE). There is heterogeneous irregular peripheral enhancement associated with the right frontal lobe mass with central non-enhancing area, consistent with necrosis. Of note are additional patchy areas of enhancement in the right anterior frontal lobe and right basal ganglia region. These additional areas of enhancement lie within the previously described region of 'FLAIR envelope'. FLAIR, fluid-attenuated inversion recovery; T1CE, T1 contrast-enhanced.

Figure 5. BOLD fMRI for localization of hand sensorimotor cortex in a patient with right frontal glial neoplasm. BOLD fMRI data is superimposed on sagittal FLAIR weighted image for anatomic localization. In the right hemisphere, the hand sensorimotor cortex (arrow) is located along the posterosuperior aspect of the frontal mass and is separated by less than one gyrus distance. FLAIR, fluid-attenuated inversion recovery.

Figure 6. BOLD fMRI for localization of tongue sensorimotor cortex. BOLD fMRI data is superimposed on axial FLAIR weighted image for anatomic localization. In the right hemisphere, the area of activation (arrow), tongue sensorimotor cortex is in immediate proximity of the posterior margin of the right frontal mass. FLAIR envelope seems to extend into this region of activation. FMRI, functional magnetic resonance imaging; FLAIR, fluid-attenuated inversion recovery.

Figure 7. BOLD fMRI for localization of Broca's area in a patient with right frontal glial neoplasm. There is bilateral Broca's area activation on sentence completion and verb generation tasks (arrows), with the right hemispheric area of activation located at the anteroinferior aspect of tumor within one gyrus distance. BOLD fMRI, functional magnetic resonance imaging.

Figure 8. Color fractional anisotropy map superimposed on axial FLAIR weighted image. There is loss of fractional anisotropy in the expected region of right corticospinal tract (arrow, blue colored fibers). This tract is located at the posteromedial margin of the FLAIR envelope. Loss of fractional anisotropy may be related edema, infiltration by tumor or displacement. FLAIR, fluid-attenuated inversion recovery.
along with fractional anisotropy measurements from diffusion images, ADC values may be associated with poor response to treatment and worse survival among high grade glioma patients. Diffusion and perfusion parameters, when combined with standard MR sequences, may allow radiation oncologists to better characterize the highest-risk regions to include in high-dose target volumes, utilizing macroscopically visible features as well as radiomic features. Voxel-based MR spectroscopy (MRS) and whole-brain spectroscopic MRI (sMRI) may identify regions of tumor infiltration and areas at high risk of recurrence; regions with metabolic abnormalities on sMRI are correlated with intraoperative tissue samples showing increased immuno-histochemical staining for neoplastic cells.

Response Assessment

As demonstrated at any multidisciplinary tumor board, imaging is of utmost importance in the interpretation of the response to treatment in glioblastoma. The first widely-adopted set of guidelines for standardizing the assessment of treatment response that utilized MR imaging was the Macdonald criteria, which used clinical parameters in conjunction with imaging measurements to classify responses into four broad categories (complete response, partial response, stable disease, and progressive disease).
Challenges and limitations of the Macdonald criteria became apparent as imaging modalities revealed more details about gliomas and their response to treatment. The importance of non-contrast-enhancing regions of abnormality has become better understood; for example, changes in the volume of Figure 13. Axial FLAIR and post contrast T1 weighted images demonstrate a large heterogeneously enhancing mass in the right parieto-occipital region with surrounding FLAIR hyperintense signal, compatible with high grade glial neoplasm. FLAIR, fluid-attenuated inversion recovery.

Figure 14. Immediate post-operative (at 24 hours) axial post contrast T1 weighted image. There is minimal residual peripheral enhancement particularly along the medial aspects of the surgical site concerning for small amount of residual tumor.

Figure 15. Immediate post-operative (at 24 hours) axial post contrast T1 weighted image. There is minimal residual peripheral enhancement particularly along the medial aspects of the surgical site concerning for small amount of residual tumor.

Figure 16. Follow up of a case of glioblastoma on therapy. Axial FLAIR weighted image demonstrates a large area of infiltrating hyperintense signal abnormality in right temporo-occipital region, with associated mass effect and leftwards shift of midline. FLAIR, fluid-attenuated inversion recovery.

Challenges and limitations of the Macdonald criteria became apparent as imaging modalities revealed more details about gliomas and their response to treatment. The importance of non-contrast-enhancing regions of abnormality has become better understood; for example, changes in the volume of...
immunotherapy response assessment in neuro-oncology (iRANO) criteria, which attempted to provide standardized guidelines for the determination of tumor progression in the setting of immune-related therapy. MRI imaging features have the potential to predict treatment response to specific modalities of treatment. Relative cerebral blood volume and dynamics parameters (K$_{\text{trans}}$ and Ve), measured by perfusion-weighted MR imaging and other features may predict treatment response to standard chemoradiation and VEGF inhibitors, prior to initiation of therapy. Radiomic features derived from these images have been shown to have predictive value as well.

CONCLUSIONS

The volume of medical imaging data continues to grow at an exponential rate. As MR imaging becomes more cost-effective and the adoption of advanced MR modalities becomes more widespread, it will become more critical than ever to incorporate advanced imaging and the power of large datasets into the management of glioblastoma. We anticipate that these changes will include not only the utilization of new MR sequences but also novel image analysis techniques, including radiomic analysis, to better drive treatment decision-making, with the goal of improving clinical outcomes in glioblastoma.
REFERENCES

