Advanced Magnetic Resonance Imaging in Glioblastoma: A Review

Gaurav Shukla
Thomas Jefferson University, gaurav.shukla@jefferson.edu

G. S. Alexander
Thomas Jefferson University

Spyridon Bakas
University of Pennsylvania

Rahul Nikam
Thomas Jefferson University, rahul.nikam@jefferson.edu

Kiran Talekar
Thomas Jefferson University, kiran.talekar@jefferson.edu

See next page for additional authors

Follow this and additional works at: https://jdc.jefferson.edu/jhnj
Let us know how access to this document benefits you

Recommended Citation
Shukla, Gaurav; Alexander, G. S.; Bakas, Spyridon; Nikam, Rahul; Talekar, Kiran; Palmer, Joshua; and Shi, Wenyin (2018) "Advanced Magnetic Resonance Imaging in Glioblastoma: A Review," *JHN Journal*: Vol. 13 : Iss. 1 , Article 5.
DOI: https://doi.org/10.29046/JHNJ.013.1.005
Available at: https://jdc.jefferson.edu/jhnj/vol13/iss1/5
Advanced Magnetic Resonance Imaging in Glioblastoma: A Review

Authors
Gaurav Shukla, G. S. Alexander, Spyridon Bakas, Rahul Nikam, Kiran Talekar, Joshua Palmer, and Wenyin Shi

This review article is available in JHN Journal: https://jdc.jefferson.edu/jhnj/vol13/iss1/5
Advanced Magnetic Resonance Imaging in Glioblastoma: A Review

Gaurav Shukla, MD1,2; G.S. Alexander, BS1; Spyridon Bakas, PhD2,3; Rahul Nikam, MD4; Kiran Talekar, MD4; Joshua Palmer, MD5; Wenyin Shi, MD1

1Department of Radiation Oncology, Thomas Jefferson University, Sidney Kimmel Cancer Center at Jefferson, Philadelphia, PA
2Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA
3Department of Radiology, University of Pennsylvania, Philadelphia, PA
4Department of Radiology, Thomas Jefferson University, Philadelphia, PA
5Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH

INTRODUCTION

In 2017, it is estimated that 26,070 patients will be diagnosed with a malignant primary brain tumor in the United States, with more than half having the diagnosis of glioblastoma (GBM). Magnetic resonance imaging (MRI) is a widely utilized examination in the diagnosis and post-treatment management of patients with glioblastoma; standard modalities available from any clinical MRI scanner, including T1, T2, T2-FLAIR, and T1-contrast-enhanced (T1CE) sequences, provide critical clinical information. In the last decade, advanced imaging modalities are increasingly utilized to further characterize glioblastomas. These include multi-parametric MRI sequences, such as dynamic contrast enhancement (DCE), dynamic susceptibility contrast (DSC), diffusion tensor imaging (DTI), functional imaging, and spectroscopy (MRS), to further characterize glioblastomas, and significant efforts are ongoing to implement these advanced imaging modalities into improved clinical workflows and personalized therapy approaches. A contemporary review of standard and advanced MR imaging in clinical neuro-oncologic practice is presented.

Initial diagnosis and surgical management

Most patients with glioblastoma undergo computed tomography of the brain upon initial presentation. Once a mass is identified and hemorrhage is excluded, a contrast-enhanced MRI is typically ordered, with standard T1, T2, FLAIR, and contrast-enhanced T1 (T1CE) sequences. Many institutions will also capture gradient echo and diffusion sequences. Maximal safe debulking surgery is recommended as the initial standard of care. Neurosurgeons will often utilize high-resolution MRI (0.5 – 1.2mm slice thickness) for surgical planning and intraoperative guidance, as well as to make the determination of how aggressively to resect based on risk of toxicity to nearby eloquent regions. Standard imaging also can identify other important characteristics of the mass in situ, including the amount of necrosis, compression of the surrounding normal tissue, and midline deviation.

A recent meta-analysis of over 40,000 glioblastoma patients demonstrated that gross-total resection was associated with improved survival as compared to subtotal resection. Historically, the determination of gross-total resection was made in the operating room by the neurosurgeon. However, in the modern era, the practice of obtaining a post-operative contrast-enhanced MRI within 24–48 hours of surgery has become routine. A recent study showed that radiological determination of the extent of resection via MRI had prognostic significance. Several series have attempted to quantify a threshold value for the extent of resection as a guide for neurosurgeons, utilizing the amount or enhancing tumor present in the preoperative and post-operative T1CE images. These series report thresholds ranging from 70% to 100%9, with the caveats that they were obtained retrospectively. To date, no formal threshold is recommended other than “maximal safe resection” as mentioned previously.

Post-operative imaging and radiation planning

After maximal safe resection, which is evaluated on immediate post-operative MRI, the standard of care for patients with glioblastoma is chemoradiation with concurrent temozolomide, after the results of a large randomized Phase III trial. Typically, chemoradiation begins 3-6 weeks after surgery to allow
Glioblastoma MRI Review

Figure 1. Axial CT image at the level of basal ganglia demonstrates a large heterogeneous mass in the right frontal lobe with mass effect on the right lateral ventricle and leftward shift of midline. Ct, computed tomography.

Figure 2. Axial FLAIR weighted image at the level of basal ganglia demonstrates heterogeneous mass centered in the right frontal lobe and basal ganglia with surrounding infiltrating signal abnormality 'FLAIR envelope' which extends medially across the corpus callosum posteriorly in the insular region. The 'FLAIR envelope' is typically a manifestation of combination of tumor infiltration and edema. There is associated mass effect on the right ventricle and leftward midline shift. FLAIR, fluid-attenuated inversion recovery.

Figure 3. Axial gradient echo (GRE) image depicts multiple foci of hypointense signal 'susceptibility artifacts' within the right frontal mass compatible with intra-tumoral blood products.

Figure 4. Post gadolinium based contrast administration T1 weighted axial image (T1CE). There is heterogeneous irregular peripheral enhancement associated with the right frontal lobe mass with central non-enhancing area, consistent with necrosis. Of note are additional patchy areas of enhancement in the right anterior frontal lobe and right basal ganglia region. These additional areas of enhancement lie within the previously described region of 'FLAIR envelope'. FLAIR, fluid-attenuated inversion recovery; T1CE, T1 contrast-enhanced.

Figure 5. BOLD fMRI for localization of hand sensorimotor cortex in a patient with right frontonal glial neoplasm. BOLD fMRI data is superimposed on sagittal FLAIR weighted image for anatomic localization. In the right hemisphere, the hand sensorimotor cortex (arrow) is located along the posterosuperior aspect of the frontal mass and is separated by less than one gyrus distance. FLAIR, fluid-attenuated inversion recovery.

Figure 6. BOLD fMRI for localization of tongue sensorimotor cortex. BOLD fMRI data is superimposed on axial FLAIR weighted image for anatomic localization. In the right hemisphere, the area of activation (arrow), tongue sensorimotor cortex is in immediate proximity of the posterior margin of the right frontal mass. FLAIR envelope seems to extend into this region of activation. fMRI, functional magnetic resonance imaging; FLAIR, fluid-attenuated inversion recovery.

Figure 7. BOLD fMRI for localization of Broca's area in a patient with right frontal glial neoplasm. There is bilateral Broca's area activation on sentence completion and verb generation tasks (arrows), with the right hemispheric area of activation located at the anteroinferior aspect of tumor within one gyrus distance. fMRI, functional magnetic resonance imaging.

Figure 8. Color fractional anisotropy map superimposed on axial FLAIR weighted image. There is loss of fractional anisotropy in the expected region of right corticospinal tract (arrow, blue colored fibers). This tract is located at the posteromedial margin of the FLAIR envelope. Loss of fractional anisotropy may be related edema, infiltration by tumor or displacement. FLAIR, fluid-attenuated inversion recovery.
MR imaging to define the at risk target volumes and organs at risk. It is common to identify shifting of brain parenchyma on planning CT in the weeks after craniotomy as the normal brain tissue expands to fill the space taken out by the tumor. One study demonstrated a 4mm shift in the position of the treatment isocenter between CT and MRI-based target delineation, even with only a few days between studies. The magnitude of the shift can be several centimeters, resulting in inaccurate registration between post-operative MRI and simulation CT. Many institutions have begun the practice of obtaining repeat MRI at the time of simulation to better characterize the soft tissues for target delineation.

Advanced imaging at this time point may play a role in radiation planning. A Polish study demonstrated the discordance between gross tumor volume (GTVs) delineated from MRI as compared to 18F-fluoroethylthyrosine-PET (FET-PET), a functional imaging modality; FET-PET was better associated with the site of eventual failure, suggesting that traditional target volumes may not be adequate. ADC maps generated from diffusion imaging can identify areas of restricted diffusion that may predict for areas of eventual recurrence with high concordance, along with fractional anisotropy measurements from diffusion images, ADC values may be associated with poor response to treatment and worse survival among high grade glioma patients. Diffusion and perfusion parameters, when combined with standard MR sequences, may allow radiation oncologists to better characterize the highest-risk regions to include in high-dose target volumes, utilizing macroscopically visible features as well as radiomic features. Voxel-based MR spectroscopy (MRS) and whole-brain spectroscopic MRI (sMRI) may identify regions of tumor infiltration and areas at high risk of recurrence; regions with metabolic abnormalities on sMRI are correlated with intraoperative tissue samples showing increased immunohistochemical staining for neoplastic cells.

Response Assessment
As demonstrated at any multidisciplinary tumor board, imaging is of utmost importance in the interpretation of the response to treatment in glioblastoma. The first widely-adopted set of guidelines for standardizing the assessment of treatment response that utilized MR imaging was the Macdonald criteria, which used clinical parameters in conjunction with imaging measurements to classify responses into four broad categories (complete response, partial response, stable disease, and progressive disease).
Challenges and limitations of the Macdonald criteria became apparent as imaging modalities revealed more details about gliomas and their response to treatment. The importance of non-contrast-enhancing regions of abnormality has become better understood; for example, changes in the volume of

Figure 13. Axial FLAIR and post contrast T1 weighted images demonstrate a large heterogeneously enhancing mass in the right parieto-occipital region with surrounding FLAIR hyperintense signal, compatible with high grade glial neoplasm. FLAIR, fluid-attenuated inversion recovery.

Figure 14. Immediate post-operative (at 24 hours) axial post contrast T1 weighted image. There is minimal residual peripheral enhancement particularly along the medial aspects of the surgical site concerning for small amount of residual tumor.

Figure 15. Immediate post-operative (at 24 hours) axial post contrast T1 weighted image. There is minimal residual peripheral enhancement particularly along the medial aspects of the surgical site concerning for small amount of residual tumor.

Figure 16. Follow up of a case of glioblastoma on therapy. Axial FLAIR weighted image demonstrates a large area of infiltrating hyperintense signal abnormality in right temporo-occipital region, with associated mass effect and leftwards shift of midline. FLAIR, fluid-attenuated inversion recovery.

Challenges and limitations of the Macdonald criteria became apparent as imaging modalities revealed more details about gliomas and their response to treatment. The importance of non-contrast-enhancing regions of abnormality has become better understood, for example, changes in the volume of
immunotherapy response assessment in neuro-oncology (iRANO) criteria, which attempted to provide standardized guidelines for the determination of tumor progression in the setting of immune-related therapy.

MRI imaging features have the potential to predict treatment response to specific modalities of treatment. Relative cerebral blood volume and dynamics parameters (K\text{trans} and Ve), measured by perfusion-weighted MR imaging and other features may predict treatment response to standard chemoradiation and VEGF inhibitors, prior to initiation of therapy. Radiomic features derived from these images have been shown to have predictive value as well.

CONCLUSIONS

The volume of medical imaging data continues to grow at an exponential rate. As MR imaging becomes more cost-effective and the adoption of advanced MR modalities becomes more widespread, it will become more critical than ever to incorporate advanced imaging and the power of large datasets into the management of glioblastoma. We anticipate that these changes will include not only the utilization of new MR sequences but also novel image analysis techniques, including radiomic analysis, to better drive treatment decision-making, with the goal of improving clinical outcomes in glioblastoma.

Figure 17.
Axial T1CE image depicts an area of heterogeneous enhancement in right temporal lobe within the region of FLAIR signal abnormality. FLAIR, fluid-attenuated inversion recovery. T1CE, T1-weighted contrast-enhanced.

Figure 18.
Axial post-contrast T1 (T1CE) images at 8 months. There is a large heterogeneously enhancing mass in the right parieto-occipital region at the operative site. There is interval development of multiple enhancing nodules along the ependymal surface of ventricles, particularly along the right frontal and temporal horn, and roof of fourth ventricles. These findings are compatible with tumor progression. T1CE, T1-weighted contrast-enhanced.

Figure 19.
On dynamic susceptibility contrast (DSC) perfusion weighted imaging, the area of signal abnormality predominantly demonstrates low relative cerebral blood volumes. The overall findings were consistent with pseudoproggression.

is most commonly observed in patients whose tumors harbored a methylated MGMT promoter region, and makes accurate assessment of response difficult, especially in the setting of clinical trials attempting to answer the question of efficacy of novel treatment regimens. Some medications, including anti-angiogenic drugs and immunologic agents, elicit unique radiographic changes which may mask accurate response assessment as well. These limitations, among others, led to the development of a new set of guidelines developed by the Response Assessment in Neuro-Oncology (RANO) working group, which incorporates more information from MR imaging, including FLAIR sequence changes, into the objective assessment. The RANO criteria have been incorporated into clinical trials and daily clinical practice, allowing better apples-to-apples comparisons.

Clinical trials in the last decade demonstrated the benefit of bevacizumab, an anti-angiogenic monoclonal antibody, in recurrent glioblastoma. The radiographic appearance of malignant gliomas changes dramatically after treatment with bevacizumab as a result of changes in vessel permeability and contrast dynamics. Initial studies showed the difficulty in distinguishing these radiographic changes from true tumor effect; the temporal dynamics were also unclear. These issues led to the development of the immunotherapy response assessment in neuro-oncology (iRANO) criteria, which attempted to provide standardized guidelines for the determination of tumor progression in the setting of immune-related therapy.

MRI imaging features have the potential to predict treatment response to specific modalities of treatment. Relative cerebral blood volume and dynamics parameters (K\text{trans} and Ve), measured by perfusion-weighted MR imaging and other features may predict treatment response to standard chemoradiation and VEGF inhibitors, prior to initiation of therapy. Radiomic features derived from these images have been shown to have predictive value as well.

Clinical trials in the last decade demonstrated the benefit of bevacizumab, an anti-angiogenic monoclonal antibody, in recurrent glioblastoma. The radiographic appearance of malignant gliomas changes dramatically after treatment with bevacizumab as a result of changes in vessel permeability and contrast dynamics. Initial studies showed the difficulty in distinguishing these radiographic changes from true tumor effect; the temporal dynamics were also unclear. These issues led to the development of the immunotherapy response assessment in neuro-oncology (iRANO) criteria, which attempted to provide standardized guidelines for the determination of tumor progression in the setting of immune-related therapy.

MRI imaging features have the potential to predict treatment response to specific modalities of treatment. Relative cerebral blood volume and dynamics parameters (K\text{trans} and Ve), measured by perfusion-weighted MR imaging and other features may predict treatment response to standard chemoradiation and VEGF inhibitors, prior to initiation of therapy. Radiomic features derived from these images have been shown to have predictive value as well.

CONCLUSIONS

The volume of medical imaging data continues to grow at an exponential rate. As MR imaging becomes more cost-effective and the adoption of advanced MR modalities becomes more widespread, it will become more critical than ever to incorporate advanced imaging and the power of large datasets into the management of glioblastoma. We anticipate that these changes will include not only the utilization of new MR sequences but also novel image analysis techniques, including radiomic analysis, to better drive treatment decision-making, with the goal of improving clinical outcomes in glioblastoma.

