Hyaline Fibromatosis Syndrome: A Novel Mutation and Recurrent Founder Mutation in the CMG2/ANTXR2 Gene.

Leila Youssefian
Thomas Jefferson University; Tehran University of Medical Sciences, leila.youssefian@jefferson.edu

Hassan Vahidnezhad
Thomas Jefferson University; Pasteur Institute of Iran, hassan.vahidnezhad@jefferson.edu

Yahya Aghighi
Tehran University of Medical Sciences

Vahid Ziaee
Tehran University of Medical Sciences

Sirus Zeinali
Pasteur Institute of Iran; Kawsar Human Genetics Research Center

See next page for additional authors

Let us know how access to this document benefits you

Follow this and additional works at: https://jdc.jefferson.edu/dcbfp

Part of the [Dermatology Commons](https://jdc.jefferson.edu/dcbfp)

Recommended Citation

Youssefian, Leila; Vahidnezhad, Hassan; Aghighi, Yahya; Ziaee, Vahid; Zeinali, Sirous; Abiri, Maryam; and Uitto, Jouni, "Hyaline Fibromatosis Syndrome: A Novel Mutation and Recurrent Founder Mutation in the CMG2/ANTXR2 Gene." (2017). *Department of Dermatology and Cutaneous Biology Faculty Papers*. Paper 66.
https://jdc.jefferson.edu/dcbfp/66
Authors
Leila Youssefian, Hassan Vahidnezhad, Yahya Aghighi, Vahid Ziaee, Sirous Zeinali, Maryam Abiri, and Jouni Uitto
Hyaline Fibromatosis Syndrome: A Novel Mutation and Recurrent Founder Mutation in the CMG2/ANTXR2 Gene

Leila YOUSSEFIAN1,2, Hassan VAHIDNEZHAD1,3,4, Yahya AGHIGHI4,5, Vahid ZIAEE6,8, Sirous ZEIINALI3,6, Maryam ABIRI2,3 and Jouni UITTO1

1Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 450 BLSB, Philadelphia, PA 19107, Pennsylvania, USA, 2Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, 3Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, 4Department of Pediatrics, Imam Khomeini Hospital, Tehran University of Medical Sciences, 5Rheumatology Research Center, School of Medicine, Tehran University of Medical Sciences, and 6Kawar Human Genetics Research Center, Tehran, Iran. Tehran, Iran. E-mail: Jouni.Uitto@jefferson.edu

This study examines 4 cases with clinical features of HFS, all resulting from consanguineous marriages (Fig. 1 and Fig. S1). Following acquisition of informed consent in accordance with the Declaration of Helsinki Principles, DNA was extracted from peripheral blood samples taken from patients and family members (if available) using QIAamp DNA Blood Mini Kit (Qiagen, Valencia, CA, USA). PCR amplification of the CMG2 gene was performed using 17 pairs of primers spanning all 17 exons and the flanking intronic sequencing, followed by bidirectional Sanger sequencing. For haplotype analysis and homoyzogosity mapping, additional primers were designed for typing of 13 informed SNPs within and flanking the CMG2 gene.

In Family 1, DNA was not available for mutation analysis from the deceased proband but both parents were heterozygous carriers of a previously unreported splice junction mutation (c.946-2A→G in intron 11) in CMG2, which by Human Splicing Finder program (www.umd.be/HSF/218) is predicted to result in aberrant splicing and a subsequent premature termination codon. Thus, the proband was deemed to be homozygous for this mutation. In Family 2, the proband had an insertion mutation, c.1073_1074insC (p.Pro358ProfsX13), which has been previously reported (8). This mutation in exon 13 causes a frameshift and results in premature termination of translation. In Family 3, a homozygous mutation, c.1074delT (p.Pro358ProfsX50) in exon 13, was detected; this recurrent mutation has been reported in a number of cases. In Family 4, no mutations in the CMG2 gene were noted, and subsequent homozygosity mapping excluded this gene locus at chromosomal region 4q21 (Fig. S1).

Since the mutation c.1074delT has been encountered in a number of cases, we examined the possibility that this mutation is either a result of “founder effect” or is a “hotspot” mutation. For this purpose, haplotype analysis with 13 SNPs within and flanking the CMG2 gene was performed with DNA from the proband in Family 2 as well as from another patient with HFS that we have recently described (9). The results revealed a 2 Mb conserved block within a 3 Mb region of the genome which included CMG2 in these probands and suggesting a founder effect in these two Iranian cases of different ethnicity and language group.

CASE REPORTS

This study examines 4 cases with clinical features of HFS, all resulting from consanguineous marriages (Fig. 1 and Fig. S1). The clinical features of these patients are presented in Appendix S1. Following acquisition of informed consent in accordance with the Declaration of Helsinki Principles, DNA was extracted from peripheral blood samples taken from patients and family members (if available) using QIAamp DNA Blood Mini Kit (Qiagen, Valencia, CA, USA). PCR amplification of the CMG2 gene was performed using 17 pairs of primers spanning all 17 exons and the flanking intronic sequencing, followed by bidirectional Sanger sequencing. For haplotype analysis and homoyzogosity mapping, additional primers were designed for typing of 13 informed SNPs within and flanking the CMG2 gene.

The CMG2 gene encodes a 55-kDa type I transmembrane protein known as capillary morphogenesis protein 2. While the precise physiologic function of this protein is currently unknown, its expression is upregulated in endothelial cells during capillary formation. This protein also serves as the main receptor of the anthrax toxin (6). The gene is expressed in all tissues with exception of the brain, a finding consistent with normal cognitive development of the affected individuals (6, 7).

DISCUSSION

Thus far, 37 distinct mutations have been identified in CMG2 in ~150 HFS patients. This study adds a previously unreported mutation to this database. Furthermore, one of our patients demonstrated the same, recurrent mutation c.1074delT, which has previously been reported in a number of cases (9, 10). Haplotype analysis in the families reported here suggests that this mutation is a result of founder effect rather than being a hotspot mutation. Finally, extensive sequencing of the CMG2 gene failed to reveal any pathogenic mutations in one family and homoyzogosity mapping excluded this gene. It should be noted that the latter patient had characteristic features of HFS, phenotypically similar to the other 4 cases, but also had additional features not present in other cases examined. These include immunodeficiency
and infantile pyloric stenosis, features also present in the Jacobsen syndrome, known as 11q terminal deletion syndrome (11). Identification of mutations in the *CMG2* gene in families with HFS can be used to confirm clinical diagnosis and will form the basis for identification of heterozygous carriers in extended families with previous history of affected children. Finally, knowledge of the specific mutations allows prenatal testing and preimplantation genetic diagnosis to prevent the reoccurrence of HFS in consanguineous families with history of this disease.

ACKNOWLEDGEMENTS

The authors thank Sara Afsharaalam, Fatemeh Golnabi, and Zahra Motezaker for contributing to this study. Carol Kelly assisted in manuscript preparation, and Dr. Andrew P. South made helpful suggestions.

The authors declare no conflict of interest.

REFERENCES

Fig. 1. Clinical features of patients with hyaline fibromatosis syndrome. Note a tumor on the right parietal area (a) and multiple nuchal papules (b) in Patient 3. Patient 4 had extensive perianal rash with subcutaneous nodules (c). Patient 2 had characteristic findings of HFS, including flexural contractures of the joints (“frog-leg position”) (f), multiple reddish pearly papules on the face and neck (e, g), prominent low-set ears (e), and hyperpigmentation shown on lateral malleoli (d).