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Introduction
Human immunodeficiency virus type 1 (HIV-1) gene expres-
sion in cells of the monocyte–macrophage lineage has been 
shown to be critically dependent on the regulation of the long 
terminal repeat (LTR), the promoter that drives proviral gene 
expression from the integrated viral DNA template. In turn, 
LTR activation requires cellular transcription factors, such as 
nuclear factor-κB (NF-κB), CCAAT/enhancer binding pro-
tein (C/EBP), Sp1, and activating transcription factor/cyclic 
AMP response element binding protein (ATF/CREB), and a 
number of other transcription factors as previously reviewed.1–3 
Four C/EBP binding sites have been identified within the 
HIV-1 subtype B LTR, three located upstream of the HIV-1 
LTR transcriptional start site (C/EBP US1, US2, US3),4 and 
one located downstream of the transcriptional start site (C/
EBP-DS3).5 A number of studies have characterized the func-
tional properties of the two upstream C/EBP binding sites, C/
EBP US1 and US2, which are required for HIV-1 replication 
in cells of the monocyte–macrophage lineage but not for repli-
cation in T-cells.6,7 Additionally, specific sequence configura-
tions of C/EBP US1 have been shown to correlate with the 
development of HIV-1-associated dementia (HAD) and 

disease progression.8–10 The C/EBP family has been shown to 
be composed of at least six different proteins (C/EBP-α, β, γ, 
δ, ε, and ζ) and belongs to the basic leucine zipper transcription 
factor family.11 C/EBPβ has been reported to regulate HIV-1 
transcription in different cell types in association with a num-
ber of cellular factors including Sp1, NF-κB, ATF/CREB, and 
CBP/p300 and the viral proteins, such as Tat and Vpr.8,12–21

The HIV-1 Tat protein is an 81-101 amino acid protein 
that has been shown to be necessary for HIV-1 replication and 
transcription as previously reviewed.22–25 Tat has been shown 
to mediate transactivation of HIV-1 through binding to the 
Tat-activated region at the 5′ end of all HIV-1 mRNAs. The 
interaction of Tat with Tat-activated region results in the 
recruitment of positive transcriptional elongation factor 
(p-TEF), composed of cyclin-dependent kinase 9 (cdk9), and 
its partner, cyclin T1.26,27 p-TEF is responsible for phospho-
rylation of the C-terminal domain of RNA polymerase II 
(RNA Pol II) and promotes transcription elongation.28,29 Tat 
was able to regulate the activity of HIV-1 LTR by interacting 
with a number of proteins, including Sp1, NF-κB, C/EBPβ, 
and CBP/p300.30–35 Specifically, Tat directly binds to C/EBPβ 
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in vitro and in vivo through amino acid residues 47–67.36 
Furthermore, Tat expression in HeLa cells has been shown to 
lead to a significant increase in the nuclear levels of C/EBPβ 
and a corresponding increase in C/EBPβ DNA-binding activ-
ity to the IL-6 promoter.36 More recently, co-expression of Tat 
and C/EBPβ has been shown to enhance C/EBPβ binding to 
the HIV-1 LTR19 and modulate monocyte chemoattractant 
protein 1 (MCP-1) gene transcription in astrocytes.37 Based 
on the critical role of MCP-1 in monocytic infiltration to the 
site of injury or inflammation in the brain38–40 and the ability 
of C/EBPβ to stimulate the basal and Tat-mediated MCP-1 
transcription, it has been proposed that the interaction 
between Tat and C/EBPβ may be important in HIV-1 infec-
tion, especially in the development of HAD.37

Recent studies have shown that the C/EBP-DS3 was able 
to regulate HIV-1 basal transcription level in U-937 cells, and 
the HIV-1 LTR containing a DS3 knockout phenotype 
(DS3-9C) exhibited a reduced level of HIV-1 basal transcrip-
tion.5 Other transcription factor binding sites identified 
downstream of the HIV-1 transcriptional start sites, includ-
ing binding sites for AP-1 (I, II, III), AP3-like (AP3-L), and 
Sp1, have been shown to regulate HIV-1 transcription and 
replication.41–44 Given the importance of the upstream C/
EBP binding sites in HIV-1 replication in cells of the mono-
cyte–macrophage lineage, the function of this newly identi-
fied downstream C/EBP binding site (C/EBP-DS3) was 
examined in this study. The studies reported herein indicate 
that the downstream C/EBP binding site was a functional C/
EBP binding site. Transactivation of the HIV-1 LTR by C/
EBPβ was inhibited when the LTR contained the DS3-9C 
variant. When C/EBPβ and Tat were expressed at increased 
concentrations, the response of the LTR depended on the 
concentration of each protein. If there were limited Tat and 
increasing levels of C/EBPβ, then loss of binding to DS3 due 
to the 9C variant demonstrated a decreased ability to transac-
tivate the LTR. However, when C/EBPβ was limited with 
increasing amounts of Tat, the loss of binding at DS3 due to 
the 9C variation demonstrated an increased ability to transac-
tivate the LTR. HIV-1 replication in U-937 monocytic cells 
showed a delay in replication at early time points most likely 
due to low levels of C/EBPβ and Tat and recovery of virus 
replication toward levels generated by the parental virus at 
later time points when there would be increased levels of Tat. 
Overall, DS3 plays a critical role in initiating HIV-1 subtype 
B transcription and replication.

Materials and methods
Cell culture and cell treatments
The U-937 human monocytic cell line (American Type Culture 
Collection. ATCC, CRL-1593.2) was grown in Roswell Park 
Memorial Institute medium (RPMI)-1640 media (Cellgro). 
Media was supplemented with 10% heat-inactivated fetal 

bovine serum (FBS; Hyclone), antibiotics, (penicillin,  
100 U/mL, and streptomycin, 100 µg/mL; Cellgro), glucose 
(4.5 g/L, Cellgro), sodium pyruvate (1 mM, Cellgro), and 
HEPES (10 mM, Cellgro). 293T cells were maintained in 
Dulbecco’s Modified Eagle Medium (ATCC) supplemented 
with FBS (10%), glucose solution (10%), sodium bicarbonate 
(2%), and antibiotics (penicillin and streptomycin at 40 µg/mL 
each). The cells were maintained at 37°C with 5% CO2.

Cloning and site-directed mutagenesis

The LTR-containing DNA fragment (approximately 640 bp) 
was derived from the LAI molecular clone of HIV-1. The 
HIV-1 LAI-LTR was PCR amplified using the forward primer: 
5′-GGGGTACCTGGAAGGGCTAATTCACTCC-3′ and 
reverse primer: 5′-TCCCCCGGGTG TAGAGATTTT 
CCACA-3′ (Integrated DNA Technologies). The italicized 
nucleotides indicate the restriction endonuclease binding sites 
used for cloning. The amplified product was digested with KpnI 
and Sma I (Promega, Madison, WI) and ligated into a modified 
pGL3-Basic vector, which contains the firefly luciferase (Luc) 
gene (Promega), to construct the parental LAI-LTR-Luc 
expression construct. The parental construct was used as a tem-
plate for site-directed mutagenesis using the QuikChange 
mutagenesis procedure as described by the manufacturer 
(Stratagene) to construct the mutant construct LAI-DS3-9C-
Luc. The following primers were used for site-directed 
mutagenesis, and the nucleotide that was mutated is underlined 
TAGTCAGTGTGCAAAATCTCTAGC (Integrated DNA 
Technologies). The LAI-DS3-9C-Luc has been shown to con-
tain the DS3 element with a G-to-C bp change at position 9 of 
the binding site of the subtype B consensus sequence (a sequence 
alteration specifically shown to completely abrogate C/EBPβ 
binding).5 All plasmids used in these studies were sequenced to 
verify the sequence configurations. Sequences were analyzed 
using Lasergene software (DNASTAR, Inc.).

The C/EBPβ-2 expression construct was generated by PCR 
amplification from human C/EBPβ cDNA (Open Biosystems, 
Human Verified Full-length cDNA Clones, MHS 1011) uti-
lizing forward primer: 5′-CACCATGGAAGTGGCCAA 
CTTCTACTA-3′ and the reverse primer: 5′-CTAGCAGTGG 
CCGGAGGAGGCGAG-3′ (Integrated DNA Technologies, 
Coralville, IA). The italicized nucleotides in the forward prim-
ers correspond to sequence necessary for directional cloning 
into the pcDNA3.1 TOPO vector (Invitrogen), while the 
underlined portion corresponds to the respective start site of 
translation. The amplified C/EBPβ PCR product was ligated 
into the pcDNA3.1 TOPO vector as described by the manu-
facturer (Invitrogen). The plasmid was verified by sequencing. 
To confirm proper protein expression, 30 µg of the C/EBPβ 
construct was transiently transfected into 3.0 × 107 293 F cells 
using 293fectin as described by the manufacturer (Invitrogen), 
and the cell nuclear extract was harvested for further analyses 
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48 hours posttransfection. Western immunoblot analysis was 
performed with the nuclear extract using antibody specific for 
C/EBPβ (C/EBPβ, sc-150, Santa Cruz Biotechnology Inc.) 
for detection of a 45-kD protein. Electrophoretic mobility shift 
supershift analyses were performed to identify the specific pro-
teins involved in DNA–protein complex formation (data not 
shown).

Transient transfection analyses

Exponentially growing U-937 cells were seeded at 1 × 106 cells 
in 2 mL of growth medium in 6-well plates on the day of 
transfection. Fugene6 transfection reagent was utilized in the 
transient transfection as described by the manufacturer 
(Rocher). Briefly, 1 µg LAI-LTR-luciferase (LAI-LTR-Luc 
reporter construct or LAI-LTR containing the DS3-9C  
variant (LTR-DS3-9C-Luc) and 50 ng pRL-TK Renilla 
luciferase internal control (Promega) were transfected together 
or cotransfected with other expression vectors: pcDNA3.1- 
C/EBPβ-2 and/or pcDNA3-Tat86. pcDNA3.1-C/EBPβ-2 is 
described above. pcDNA3-Tat86 expression vector was pro-
vided by Dr. Kamel Khalili (Temple University, Philadelphia, 
PA). The pcDNA3.1 vector without an insert was used to give 
each transfection an equal amount of total DNA. Cells were 
harvested 24 hours posttransfection, and cell lysates were pre-
pared using 50 µL 1× passive lysis buffer (Promega). Luciferase 
activity was assayed using the dual luciferase assay system as 
described by the manufacturer (Promega). Normalization to 
an internal control plasmid was not performed in the experi-
ments with cotransfection expression vectors because previous 
studies and our results have demonstrated the responsiveness 
of widely used internal control vectors to cotransfected tran-
scriptional regulators.45–48 Each value represents the average of 
triplicate transfection reactions and is representative of at least 
three independent experiments. The error bars shown in each 
figure indicate the standard deviation.

Molecular clones and infection experiment

An infectious molecular clone corresponding to the LAI 
strain of HIV-1 (pLAI.2) was obtained as a glycerol stock 
from the NIH AIDS Research and Reference Reagent 
Program (Catalog number 2532, NIH, MD). Escherichia coli 
containing the molecular clone were grown in Luria-broth 
(MILLER) supplemented with ampicillin (100 mg/mL) at 
30°C, 200 RPM overnight. DNA was isolated using an 
EndoFree Maxiprep procedure as described by the manufac-
turer (USB). The 3′ LTR was digested from the molecular 
clone using AatII and BamHI (NEBiolabs) and ligated into 
pUC19 (NEBiolabs). The LTR was subjected to site-directed 
mutagenesis to incorporate 9C mutations into C/EBP-DS3. 
Mutagenesis primers were the same as utilized in site-directed 

mutagenesis for constructing LAI-LTR-DS3-9C-Luc 
described above. The mutated LTR was digested from 
pUC19 and ligated back into the parental molecular clone. 
The parental and mutant molecular clones were sequenced 
completely to confirm the presence of DS3 mutant and the 
absence of any other mutations in the HIV-1 genome subse-
quent to the mutagenesis process.

Molecular clone DNA (10 µg) was transfected into 293T 
cells in 10 cm dishes using the ProFection mammalian trans-
fection system (E1200; Promega). Forty-eight hours after 
transfection, cell supernatants were collected and assayed for 
p24 using Enzyme-linked immunosorbent assay (ELISA) as 
directed by the manufacturer (Perkin Elmer). U-937 cells 
were seeded at a density of 6 × 104 cells/well in a 96-well 
v-bottom plate. Cells were then incubated for two hours with 
25 ng/mL p24 of molecular clone-derived HIV-1 LAI 
parental or LAI 9C strains complexed with Transfectam 
(Promega). Virus–Transfectam complexes were prepared by 
mixing 25 ng/mL p24 of virus with 5 mg/mL of Transfectam 
in a total of 0.5 mL of serum-free RPMI. After incubating at 
37°C for 45 minutes, the medium volume was increased to  
3 mL with RPMI containing antibiotics and FBS to bring 
the serum concentration to 10%. Following the two-hour 
incubation with virus, cells were washed and subsequently  
cultured. The supernatant was collected, and the cells were 
washed, supplied with new media, and split at 3-day intervals 
for a total of 12 days. The supernatant from days 3, 6, 9, and 
12 was subsequently assayed for HIV-1 production by deter-
mining the level of p24 core antigen in the supernatant using 
an HIV-1 p24 antigen ELISA assay (ZeptoMetrix Corp.). 
Infectivity was expressed relative to mock-infected cells.

Statistical analysis

The results were statistically analyzed by Student’s t-test. 
Differences between groups were considered significant if P < 
0.05 was obtained.

Results
C/EBP-DS3 affects HIV-1 LTR transcription 
activated by C/EBPβ in U-937 cells

Although U-937 cells represent a promonocytic cell line, 
undifferentiated U-937 cells are exclusively susceptible to 
infection by CXCR4-utilizing (X4) HIV-1 strains and have 
been utilized in a number of HIV-1 replication studies to 
examine selected aspects of the viral life cycle.49 In particular, 
U-937 cells and X4 HIV-1 strains have been previously uti-
lized for identifying upstream C/EBP binding sites required 
for HIV-1 replication in cells of the monocyte–macrophage 
lineage.6,7 Moreover, electrophoretic mobility shift analyses 
have shown that HIV-1 C/EBP-DS3 is able to form a 
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DNA–protein complex containing C/EBPβ protein from 
U-937 cell nuclear extract.5 Therefore, the role of C/EBP- 
DS3 in HIV-1 transcription was first investigated in U-937 
promonocytic cells.

U-937 promonocytic cells were transfected with 1 µg 
parental HIV-1 LAI-LTR-Luc or the LAI-DS3-9C-Luc in 
the absence or presence of increasing amounts of C/EBPβ-2 
(activator) expression plasmid (Figure 1). Western immunob-
lot assays were performed to demonstrate that the protein 
expression levels of C/EBPβ were increased in a dose-
dependent manner when cotransfected with parental LTR or 
LTR-DS3-9C (Figure 1C). Expression of increasing amounts 
of C/EBPβ-2 (from 150, 300, 600 to 1200 ng per reaction) 
led to a dose-dependent increase in HIV-1 LTR activity in 
both the parental and DS3-9C LTR, with the parental  
LTR demonstrating a 2- to 5-fold higher level of activity 
(Figure 1). Specifically, in the presence of 1200 ng of C/EBPβ 
expression vector, when comparing to fold over the parental 
LTR basal activity, the maximal transactivation levels of 
parental LTR and LTR-DS3-9C were 5.5- and 1.9-fold, 
respectively (Figure 1A). When the results were analyzed as 
fold over their own basal activity, the transactivation levels 
were 5.5- and 3.3-fold, respectively (Figure 1B). These results 
indicated that, similar to the upstream C/EBP binding sites, 
C/EBP-DS3 was able to affect HIV-1 transcription through 
interaction with C/EBPβ. Specifically, the reduced occupancy 
of DS3 resulted in reduced ability to be transactivated by  
C/EBPβ.

Tat activates the LTR-DS3-9C variant in U-937 
monocytic cells
Previous studies have shown that some transcription factor 
binding sites located downstream of the HIV-1 transcriptional 
start site play an important role in the Tat-mediated transacti-
vation of the HIV-1 LTR.41,50 To determine whether C/
EBP-DS3 could also affect Tat transactivation of the LTR, 
U-937 cells were transfected with 1 µg parental LAI-LTR-Luc 
or LTR-DS3-9C-Luc reporter vectors in the absence or pres-
ence of increasing amounts of Tat. As shown in Figure 2, Tat 
expression increased the activity of both the parental and DS3-
9C-containing LTRs. In the presence of 50 ng of Tat expres-
sion vector, the activity of the HIV-1 LTR was similar between 
the parental and DS3-9C-containing configurations, with 
elevated activities of 13.8- and 14.2-fold, respectively. In the 
presence of increasing amounts of Tat expression vectors from 
150, 300 to 600 ng, both LTRs exhibited increased activity in a 
dose-dependent manner. Specifically, the parental LTR trans-
activation levels were increased up to 20-, 29.6-, and 35.7-fold, 
respectively, which was higher than the levels of LTR-DS3-9C, 
16.7-, 19.7-, and 24.7-fold, respectively (Figure 2A). However, 
when 1200 ng Tat expression vector was added to the cells, the 
transactivation level of LTR-DS3-9C (38.9-fold) was similar 
to that of parental level (36.4-fold). These results indicated 
that the LTR-DS3-9C variant needed much higher concentra-
tions of Tat to be activated to levels similar to parental LTRs 
when there were low levels of C/EBPβ present (similar to 
those detected in U-937 cells). When analyzing the results 

Figure 1.  DS3-9C exhibited reduced ability to be transactivated by C/EBPβ. U-937 cells were transiently transfected with 1 µg LAI-LTR-Luc or LAI-DS3-

9C-Luc in the absence or presence of increasing amounts of C/EBPβ, as indicated in the figures. Twenty-four hours posttransfection, cell lysates were 

harvested and luciferase activity was measured. (A) Results were analyzed by comparing the fold over the parental basal LTR activity level. (B) Results 

were analyzed by comparing the fold over its own basal LTR activity level. Asterisk indiscates that P value < 0.001. (C) The protein expression levels of  

C/EBPβ as demonstrated by Western blot were increased with the increasing amounts of C/EBPβ expression vectors cotransfected with LAI-LTR-Luc 

(upper) or LTR-DS3-9C-Luc (lower) in U-937 cells.
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obtained with the parental and LTR-DS3-9C variant by com-
paring each LTR to its own basal transcription level, increasing 
Tat expression increased the transcription levels of DS3-9C-
containing LTRs by 26.0-, 31.9-, 38.0-, 47.5-, and 74.3-fold, 
respectively, which were actually higher than the levels of the 
parental LTR, 13.8-, 20.0-, 29.6-, 35.7-, and 36.4-fold, respec-
tively (Figure 2B). These results suggest that Tat can help over-
come the loss of C/EBP-mediated LTR activation, at least 
under selected physiological conditions.

HIV-1 LTR activities are further elevated by  
C/EBPβ and Tat together

Since the LTR-DS3-9C variant exhibited a lower transactiva-
tion capability in the presence of C/EBPβ while achieving 

normal or even a higher level in the presence of Tat, and both 
factors have been shown to be important for HIV-1 gene 
expression in cells of monocyte–macrophage lineage, further 
investigations to determine whether there was a specific inter-
action between C/EBPβ, Tat, and the HIV-1 LTR-DS3 vari-
ant were performed. U-937 cells were transfected with 1 µg 
parental or LTR-DS3-9C in the absence or presence of 50 ng 
Tat expression vector and increasing amounts of C/EBPβ 
expression vector. As shown in Figure 3, the cooperative inter-
action between Tat and C/EBPβ-2 has been observed in both 
LTR configurations. In particular, when analyzed as fold over 
the parental basal LTR activity level (Figure 3A), increasing 
amounts of C/EBPβ-2 (100–1200 ng) increased the parental 
LTR from 26-, 26.3-, 43.0- to 41.3-fold, respectively, while the 
LTR activity of the LTR-DS3-9C variant were increased by 
16.8-, 33.2-, 30.6-, and 16.0-fold, respectively. Unlike the 
parental LTR, with greater amounts of C/EBPβ-2 (600 and 
1200 ng), the transcription level of LTR-DS3-9C was 
decreased. When analyzed as fold was over their own basal 
transcription activity (Figure 3B), the maximal transcription 
level of LTR-DS3-9C-driven transcription was obtained with 
50 ng Tat and 300 ng C/EBPβ-2 (55.9-fold), which was higher 
than the highest level achieved with the parental LTR (43.0-
fold). These results indicated that the LTR-DS3-9C variant 
exhibited a greater ability to be induced by Tat and C/EBPβ-2 
together, once LTR-DS3-9C basal level was enhanced to the 
level of the parental LTR.

In contrast, when U-937 cells were transfected with 1 µg 
parental LAI-LTR-Luc or LAI-DS3-9C-Luc in the absence 
or presence of 100 ng C/EBPβ expression vector and a series of 
increasing amounts of Tat expression vectors, LTR activity was 
increased in both parental and DS3-9C-containing LTRs. The 
maximum activity of the parental LTR and the LTR-DS3-9C 
variant occurred with 100 ng C/EBPβ and 600 ng Tat expres-
sion vector, 37.7- and 50.2-fold, respectively. In addition, in all 
Tat levels examined, LTRs containing the DS3-9C configura-
tion resulted in increased LTR activity over the parental LTR 
demonstrating that loss of C/EBP binding to DS3 can be 
overcome by increased expression of C/EBPβ (which can be 
found in the cells of the activated monocyte–macrophage line-
age) and increased expression of Tat, leading one to conclude 
that DS3-9C may be involved in controlling HIV-1 replication 
in activated monocyte–macrophage environments.

DS3-9C decreases HIV-1 LAI replication in 
U-937 monocytic cells

To determine the effects of DS3 on HIV-1 replication, the 
DS3-9C variation was incorporated into an infectious molecu-
lar clone of the LAI strain of HIV-1. Molecular clone-derived 
viral particles were used to infect U-937 cell lines (Figure 4). 
Levels of p24 in the media were measured at 3, 6, 9, and 12 
days postinfection. In U-937 cells, when compared with the 
parental LAI viral strain, the HIV-1 DS3-9C-containing 

Figure 2.  DS3-9C impacts Tat transactivation of the HIV-1 LTR. U-937 

cells were transiently transfected with 1 µg LAI-LTR-Luc or LAI-DS3-9C-

Luc in the absence or presence of increasing amounts of Tat expression 

vectors as indicated. Cell lysates were collected and processed for 

luciferase activity 24 hours posttransfection. (A) Fold over parental basal 

activity. (B) Fold over their own basal activity. Asterisk indicates that P 

value < 0.05.
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variant viruses resulted in lower replication levels at each time 
point examined. However, the maximal p24 level of parental 
virus was 213 ng/mL at 3 days postinfection, after which time 
lower levels of virus were observed. However, the replication 
levels of HIV-1 DS3-9C variant viruses continuously increased 
from day 3 (p24 level was 53 ng/mL) to day 12 (p24 level was 
112 ng/mL) postinfection (Figure 4). Although the HIV-1 

LAI strain, a CXCR4-utilizing virus, was examined in this 
study, it was able to effectively infect U-937 cells, which has 
also been demonstrated in other studies.51,52 Therefore, the 
comparison of the replication levels of these two viruses indi-
cated that the DS3-9C variant exhibited a decreased replica-
tion ability at early time points but clearly has the ability to 
reach parental levels at later time points.

Discussion
Although numerous studies have investigated the important 
roles played by upstream cis-acting transcription factor binding 
sites and their cognate transcription factors regulating HIV-1 
gene expression, relatively few studies have been reported con-
cerning the transcription factor binding sites located down-
stream of the transcriptional start site of HIV-1 LTR. The 
sequence analyses have shown that some transcription factor 
binding sites located downstream of the transcriptional start 
site exhibit a high degree of sequence conservation by compari-
son to the subtype B consensus sequence.5 High sequence con-
servation may indicate the positive selection of these sites 
during the course of viral evolution within patients and across 
the infected patient population. For example, the downstream 
AP-1 binding sites within subtype B LTRs have been shown to 
be highly conserved genotypically5 and affect the basal and  
Tat transactivation ability of the HIV-1 LTR.42,50 Proviruses 

Figure 3.  Tat and C/EBPβ were able to cooperatively increase HIV-1 parental LTR and LTR-DS3-9C. (A) and (B) U-937 cells were transiently transfected 

with 1 µg LAI-LTR-Luc or LTR-DS3-9C-Luc in the absence or presence of 50 ng Tat and increasing amounts of C/EBPβ (100, 300, 600, to 1200 ng) 

together. (C) and (D) U-937 cells were transiently transfected with 1 µg LAI-LTR-Luc or LAI-DS3-9C-Luc in the absence or presence of 100 ng C/EBPβ 

and increasing amounts of Tat (100, 300, 600, to 1200 ng) together. Twenty-four hours posttransfection, cell lysates were collected and luciferase activity 

was measured. The results shown in (A) and (C) indicate the fold over parental LTR basal activity, and the results shown in (B) and (D) indicate the fold 

over their own basal transcription level.

Figure 4.  HIV-1 LAI molecular clones containing DS3-9C demonstrated 

an altered replication phenotype. Molecular clone-derived viral particles 

were used to infect U-937 monocytic cells as described in the “Materials 

and methods” section. Levels of p24 in the media were measured at 3, 6, 

9, and 12 days postinfection. The gray line corresponds to the HIV-1 LAI 

parental virus. The black line corresponds to the LAI virus containing the 

DS3-9C variant configuration.
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containing mutations in three AP-1 binding sites abolished 
HIV-1 replication in peripheral blood mononuclear cells and 
T-lymphocyte cell lines.41 Therefore, to better understand the 
pathogenesis of HIV-1, a more thorough characterization of 
the HIV-1 LTR is required, including studies of the transcrip-
tion factor binding sites located downstream of the transcrip-
tional start site.

Cells of the monocyte–macrophage lineage are important 
for HIV-1 replication and long-term persistence of HIV-1. 
Unlike T-lymphocytes, cells of the monocyte–macrophage lin-
eage infected with HIV-1 are resistant to the cytopathic effects 
of the virus and serve as a long-lived reservoir for HIV-1-
persistent infection.49,53 Furthermore, the ability of mac-
rophages to migrate into other tissues or to invade the brain is 
relative to a number of HIV-1-associated diseases, including 
HAD.54 Additionally, studies have shown that cells of mono-
cytic origin are able to harbor latent HIV-1 provirus in all 
stages of the disease even in patients receiving successful highly 
active antiretroviral therapy, indicating that in addition to rest-
ing CD4+ T-cells, monocyte–macrophage are another poten-
tial latent virus reservoir, which may be able to continue to 
accumulate and harbor replication-competent HIV-1.55–58 
Results reported herein suggest that one downstream C/EBP 
site with low DNA binding affinity for C/EBPβ (DS3-9C) 
might be related to HIV-1 persistence and reactivation in cells 
of the monocyte–macrophage lineage.

HIV-1 LTRs containing the DS3-9C configuration (a 
knockout configuration) exhibit relatively lower basal5 and C/
EBPβ-mediated LTR activity (Figure 1), suggesting that 
DS3-9C could function as a negative regulatory element, to 
suppress HIV-1 transcription, especially at the beginning of 
infection when minimal viral protein has been produced yet, 
helping HIV-1 to evade the immune response by essentially 
increasing the energy of activation required to achieve the pro-
ductive virus replication phase driven by high concentrations of 
Tat. However, once the infected cells are activated by proper 
extracellular stimuli or in the presence of enough Tat protein, 
LTR-DS3-9C could function at levels comparable to parental 
LTRs or even with higher LTR activity (Figures 2 and 3). 
Specifically, compared with parental LTR, although the activ-
ity levels of LTR-DS3-9C were lower at certain quantities of 
Tat (150, 300, and 600 ng), LTR-DS3-9C was able to be acti-
vated to the similar levels in the presence of 50 and 1200 ng 
Tat, respectively, indicating that (1) LTR-DS3-9C was able to 
respond rapidly to the low quantities of Tat, which could be 
important for HIV-1 transcription initiation, and (2) LTR-
DS3-9C was able to act as transcription-competent LTR in 
the presence of large quantities of Tat. The results also sug-
gested that once LTR-DS3-9C activation was initiated, which 
was approximated in the assays by analyzing the results as fold 
over their own basal level, the maximal activity level of LTR-
DS3-9C activation by Tat (74.3-fold) was significantly higher 
than that of parental LTR (36.6-fold), suggesting that (3) 

LTR-DS3-9C exhibited a greater degree of Tat inducibility. 
Additionally, when the LTR-DS3-9C was activated by the 
small amounts of C/EBPβ, LTR-DS3-9C exhibited a higher 
level of transactivation in the presence of Tat (Figure 3C and 
D), which further confirmed LTR-DS3-9C as a transcription-
competent variant. The replication results demonstrated that 
although the levels of DS3-9C variant viruses were lower than 
those of the parental virus during the first 12 days postinfec-
tion, the levels were continuously increased while those of 
parental viruses attained a maximal level at 3 days postinfection 
and then started to decline (Figure 4), suggesting that there 
may be a delay in virus replication. Taken together, these results 
suggest that this site is regulated by the cell activation state and 
produced viral proteins, especially, the amounts of C/EBPβ 
and Tat present within the infected cell.

HIV-1 infection in T-lymphocytes or cells of the mono-
cyte–macrophages could result in three possible outcomes: (1) 
productive replication without efficient immune recognition 
leading to extensive viral production and the death of the host 
cells; (2) productive replication with immune recognition lead-
ing to the clearance of infected cells prior to high-level virus 
production; and (3) infection leading to limited viral gene 
expression and failure to eliminate infected cells by the immune 
system with continued maintenance of latent or persistent pro-
virus within the infected cell population (Figure 5). Based on 
these observations, we propose that infection with virus con-
taining the LTR-DS3-9C variant could lead to the third out-
come. Specifically, during the early stage of HIV-1-DS3-9C 
infection, no Tat protein was produced and the transcription 
was totally dependent on host cell factors (NF-κB, Sp1,  

Figure 5.  Three possible outcomes of HIV-1 infection in T-lymphocytes 

and cells of the monocyte–macrophage lineage. Left: productive HIV-1 

infection without immunologic control; middle: productive infection with 

immunologic control; right: low productive infection with immune evasion. 

Since the infected cells are activated, the expression of cellular factors 

(NF-κB, Sp1, and C/EBPβ) are increased and/or enough amounts of Tat 

are available, these viruses are able to be transcription and replication 

competent.
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C/EBPβ, CBP/p300, PCAF, etc.).17,59–62 LTR-DS3-9C-
containing viruses exhibited relatively low basal transcription 
and replication level, which helped DS3-9C viruses evade 
immune system surveillance and perhaps be retained in the 
infected cell population. With disease progression and/or some 
external stimuli, the infected cells were activated; the active 
form of NF-κB could be produced and translocated to the 
nucleus; and the expression levels of Sp1 and C/EBPβ were 
increased, all promoting HIV-1 transcription initiation. 
Subsequently, Tat was produced, and efficient transcription 
elongation occurred, allowing DS3-9C variant viruses to repli-
cate with a delayed phenotype.

Recent studies have shown the linkage between HIV-1 rep-
lication and disease progression with genetic alterations in 
selected transcription factor binding sites within the HIV-1 
LTR, such as Sp1-binding sites63,64 and US1 C/EBP site.10 It 
is possible that virus containing the DS3-9C variant might be 
associated with a greater propensity to establish latency. 
Defective HIV-1 transcription, which could be caused by (1) 
low levels of NF-κB,65–67 (2) low levels of Tat,68–72 and (3) lim-
ited cellular coactivators, such as cyclin T1, a component of the 
p-TEF complex,65,73 is one of the major reasons for HIV-1 
latency. Although transient transfection provides a simpler 
chromatin structure, it helps in understanding activities of inte-
grated LTRs. The establishment of an open nuc-1 is critical for 
HIV-1 gene expression74,75 and DS3-9C is located at the 3′ 
edge of nucleosome-1 (nuc-1), so it is possible that DS3-9C 
variant may lead to a structural change in the LTR that results 
in a specific restrictive chromatin structure limiting the acces-
sibility of Tat and coactivators (HAT and/or SWI/SNF) to the 
LTR, thereby resulting in a low level of HIV-1 transcription 
and possibly latency. Within the context of proper stimuli, the 
latent viruses are able to reactivate and function as parental 
viruses.

Conclusion
The function of one C/EBP binding site located downstream 
of the HIV-1 LTR transcription start site has been charac-
terized. This binding site configuration with low DNA bind-
ing affinities for C/EBPβ (DS3-9C) may be transcriptionally 
competent and be able to facilitate productive replication in 
the presence of Tat. This LTR variant may promote HIV-1 
persistence and reactivation in cells of the monocyte–mac-
rophage lineage. Further experiments will examine the role 
of this interesting cis-acting element in vivo, utilizing stably 
integrated LTRs or genomes containing the DS3-9C variant 
in different cell types under an assortment of stimulatory 
conditions. With respect to the important roles played by 
upstream and downstream C/EBP binding sites in the regu-
lation of HIV-1 gene expression in cells of the monocyte–
macrophage lineage, C/EBP binding sites may be the 
potential targets for design of novel forms of HIV-1 
therapeutics.
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