The GUCY2C Tumor Suppressor is the Nexus of a Paracrine Hormone Axis Preventing Radiotherapy-Induced Gastrointestinal (GI) Toxicity

E. J. Wuthrick
Thomas Jefferson University and Hospitals

P. Li
Thomas Jefferson University and Hospitals

J. E. Lin
Thomas Jefferson University and Hospitals

A. P. Dicker
Thomas Jefferson University and Hospitals

D. Leeper
Thomas Jefferson University and Hospitals

See next page for additional authors

Follow this and additional works at: https://jdc.jefferson.edu/bodinejournal

Part of the [Oncology Commons](https://jdc.jefferson.edu/bodinejournal)

Let us know how access to this document benefits you

Recommended Citation

DOI: https://doi.org/10.29046/TBJ.003.1.043

Available at: https://jdc.jefferson.edu/bodinejournal/vol3/iss1/44
The GUCY2C Tumor Suppressor is the Nexus of a Paracrine Hormone Axis Preventing Radiotherapy-Induced Gastrointestinal (GI) Toxicity

Authors
E. J. Wuthrick, P. Li, J. E. Lin, A. P. Dicker, D. Leeper, and S. A. Waldman

This accepted abstract is available in Bodine Journal: https://jdc.jefferson.edu/bodinejournal/vol3/iss1/44
The GUCY2C Tumor Suppressor is the Nexus of a Paracrine Hormone Axis Preventing Radiotherapy-Induced Gastrointestinal (GI) Toxicity

Wuthrick, E.J., Li, P., Lin, J.E., Dicker, A.P., Leeper, D., Waldman, S.A.

1Department of Radiation Oncology, Thomas Jefferson University and Hospitals, Philadelphia, PA
2Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University and Hospitals, Philadelphia, PA

Purpose/Objective
Radiation-induced GI toxicity is the primary dose limitation compromising therapy in cancer patients treated with radiation therapy. GUCY2C is the intestinal receptor for diarrheagenic bacterial enterotoxins and the endogenous paracrine hormones guanylin and uroguanylin. Following genomic insult, cyclic (c)GMP produced by ligand activation of GUCY2C enhances DNA damage sensing and repair in intestinal cells. Here, we show that the GUCY2C-cGMP axis mediates p53-dependent radioprotection of intestinal epithelial cells.

Materials/Methods
Following total body irradiation (TBI) of Gucy2C+/+ (wild type; n=3) and Gucy2C−/− (knockout; n=3) mice with 0, 5 and 10 Gy, intestines were formalin-fixed. Cell proliferation, apoptosis and DNA double strand breaks were quantified by immunohistochemistry using antibodies to Ki-67, cleaved caspase 3 and γ-H2AX, respectively. Gucy2C+/+ (n=29) and Gucy2C−/− (n=38) mice were exposed to 13-18 Gy TBI inducing lethal GI toxicity and survival followed up to 10d. In vitro, HCT116 (p53 wild type) and HCT116p53−/− (p53 null) human colon cells were treated with cGMP for 3 d, followed by 10, 30 and 50 Gy of ionizing radiation (IR).

Results
Gucy2C−/− mice exhibited accelerated death reflecting TBI-induced GI toxicity compared to Gucy2C+/+ mice (median survival: 7 d, Gucy2C+/+ mice; 5 d, Gucy2C−/− mice). The hazard ratio for death in Gucy2C−/− mice was 2.17 (95% confidence interval: 1.17 - 4.01, p = 0.0133 by the log-rank test). Reduced survival in Gucy2C−/− mice was associated with a 28% increase in crypt cell apoptosis (p = 0.09). Conversely, HCT116 cells preconditioned with cGMP resisted IR-induced cell death (12% cell death in cGMP-treated cells vs. 6% in control cells at 20 Gy; 17% vs. 10% at 40 Gy; 47.5% vs. 8% at 80 Gy). Protection by cGMP preconditioning was p53 dependent, and cGMP did not reduce IR-induced cell death in HCT116p53−/− cells (21.5% cell death in cGMP-treated cells vs. 25% in control cells at 20 Gy; 26% vs. 19% at 40 Gy).

Conclusion
Eliminating the GUCY2C-cGMP axis increased radiation-induced intestinal DNA damage, crypt cell apoptosis, and lethal GI toxicity in Gucy2C−/−, compared to Gucy2C+/+, mice. Conversely, GUCY2C downstream signaling in human colon cells in vitro attenuated radiation-induced cell death in a p53-dependent fashion. These observations suggest that the GUCY2C-cGMP axis maintains genomic integrity by amplifying DNA damage sensing and repair in the intestine following exposure to IR, protecting against lethal radiation-induced GI toxicity. They underscore the potential of oral administration of GUCY2C ligands for targeted radioprotection of intestinal epithelia to prevent IR-induced GI toxicity to improve the management of cancer therapy.