Pathologic Correlation of PET-CT Based Auto Contouring for Radiation Planning in Lung Cancer

S. E. Fogh
Thomas Jefferson University and Hospitals

A. Farach
Jefferson Medical College

C. Intenzo
Thomas Jefferson University and Hospitals

R. Axelrod
Thomas Jefferson University and Hospitals

P. McCue
Thomas Jefferson University and Hospitals

See next page for additional authors

Follow this and additional works at: https://jdc.jefferson.edu/bodinejournal

Part of the [Oncology Commons](https://jdc.jefferson.edu/bodinejournal)

Let us know how access to this document benefits you

Recommended Citation
DOI: https://doi.org/10.29046/TBJ.003.1.029

Available at: https://jdc.jefferson.edu/bodinejournal/vol3/iss1/30
Pathologic Correlation of PET-CT Based Auto Contouring for Radiation Planning in Lung Cancer

Authors

This accepted abstract is available in Bodine Journal: https://jdc.jefferson.edu/bodinejournal/vol3/iss1/30
Pathologic Correlation of PET-CT Based Auto Contouring for Radiation Planning in Lung Cancer

Fogh, S.E.,¹ Farach, A.,² Intenzo, C.,³ Axelrod, R.,³ McCue, P.,⁴ Harper, A.,⁵ Nelson, A.,⁶ Werner-Wasik, M.¹

¹Department of Radiation Oncology, Thomas Jefferson University and Hospitals, Philadelphia, PA
²Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA
³Department of Medical Oncology, Thomas Jefferson University and Hospitals, Philadelphia, PA
⁴Department of Pathology, Thomas Jefferson University and Hospitals, Philadelphia, PA
⁵Department of Radiology, Thomas Jefferson University and Hospitals, Philadelphia, PA
⁶MIMVista Corporation, Cleveland, Ohio

Purpose/Objective(s)
Radiation therapy in lung cancer relies on CT and functional imaging (FDG-PET) to delineate tumor volumes. Semi-automatic contouring tools have been developed for PET to improve on the inter-observer bias of manual contouring and intrinsic differences in imaging equipment. A common method involves using a threshold at a given percentage of the max activity, which may be less accurate with smaller tumors and tumors with low source to background ratio. To overcome this deficiency, a gradient algorithm, which detects changes in image counts at the border of the tumor, has been developed. Few studies have correlated these methods to pathological specimens.

Materials/Methods
Thirty-three patients with lung cancer underwent lobectomy and had available PET imaging prior to resection. We retrospectively contoured tumors using 1) a constant threshold algorithm which included all voxels within a defined region with counts exceeding 34% of the maximum counts in that region, and 2) a commercially-available gradient-based “PET edge” tool. Largest tumor diameters from both methods were compared to the largest diameter from gross pathology reports using Pearson’s correlation coefficient (CC).

Results
CC between maximal diameter contoured with the gradient tool or 34% percent threshold and tumor diameter were 0.79 and 0.82, respectively. The median largest tumor diameters were as follows: from pathology reports, 2.1 cm (range 0.6-9.5 cm); from threshold method, 2.9 cm (range 2.1-10.7 cm); from gradient tool, 2.8 cm (range 1.7-10.4 cm). Tumor diameters ≤ 2.1 had a poor correlation with PET derived diameters (CC = 0.19 for gradient method and 0.31 for threshold method). Tumors larger than 4 cm had the best correlation with automatic contouring techniques (CC = 0.87 for gradient method and 0.83 with threshold method). The percent threshold method was more highly correlated with pathologic tumor size in tumors with SUVs less than 2.5 (CC = 0.75 for gradient technique and 0.92 for threshold technique) but no difference between the techniques was noted in tumors with SUVs of 2.5 or greater. Adenocarcinoma histology was more highly correlated with both the gradient and threshold method (CC = 0.92 and 0.93 respectively) vs. other histologies (0.04 and 0.09 respectively). The Average Percent Error using the gradient method was 28% +/- 58% and 47.8% +/- 62% for threshold method (P = 0.0003).

Conclusion
Maximal diameters obtained with gradient and threshold methods were correlated with maximal pathologic diameter. The gradient method had significantly less percent error then the threshold method. The threshold method demonstrated stronger correlation to pathologic diameter in tumors with SUVs below 2.5. Histology, size and SUV influenced correlation to pathology.