Circulating tumor DNA to monitor metastatic breast cancer.

Massimo Cristofanilli
Kimmel Cancer Center, Thomas Jefferson University, Massimo.Cristofanilli@jefferson.edu

Paolo Fortina
Kimmel Cancer Center, Thomas Jefferson University, paolo.fortina@jefferson.edu

Follow this and additional works at: https://jdc.jefferson.edu/kimmelccfp

Part of the Oncology Commons

Let us know how access to this document benefits you

Recommended Citation

https://jdc.jefferson.edu/kimmelccfp/27

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Kimmel Cancer Center Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Circulating Tumor DNA to Monitor Metastatic Breast Cancer

TO THE EDITOR: Dawson et al. (March 28 issue)\(^1\) suggest that the detection of circulating tumor DNA in 58% of patients with metastatic breast cancer can be used as an effective indicator of tumor load during treatment with standard systemic therapies. The study does not address the clinical utility of circulating tumor DNA. Moreover, the authors claim that circulating tumor DNA represents a more effective monitoring tool than the enumeration of circulating tumor cells. This statement is incorrect, considering that the enumeration of circulating tumor cells proved the ability to predict prognosis and monitor treatment efficacy in all patients with metastatic breast cancer, regardless of disease subtype.\(^2\) Furthermore, new detection methods describe the molecular heterogeneity and measure dynamic phenotypic changes in circulating tumor cells during metastasis.\(^3,4\) We propose that circulating tumor DNA provides a complementary method in the assessment of patients with detectable mutations and should be more appropriately used to select and monitor molecularly targeted therapies. Combined diagnostic methods will provide a more effective approach than each method alone to the implementation of precision medicine and improved clinical outcomes.

Massimo Cristofanilli, M.D.
Paolo Fortina, Ph.D.
Kimmel Cancer Center
Philadelphia, PA
massimo.cristofanilli@jefferson.edu

No potential conflict of interest relevant to this letter was reported.

One apparent limitation of our work was that only two genes (PIK3CA and TP53) were analyzed for most patients. These are the two most commonly mutated genes in breast cancer, and as expected, they were informative in half the patients recruited. This does not represent a general limitation of circulating tumor DNA: as a proof of principle, we also found that we were able to monitor other somatic mutations and structural variants in a subset of patients who did not have mutations in PIK3CA or TP53. Our data indicate that any cancer-specific mutation can be monitored in circulating tumor DNA from patients with metastatic breast cancer.

The timing of blood and plasma collection is obviously an important variable. In our study, all samples were collected immediately before the administration of each treatment cycle. The possibility of measuring an increase in the release of circulating tumor DNA as an indicator of responsiveness is attractive and is supported by xenograft models.1

Sarah-Jane Dawson, Ph.D.
Nitzan Rosenfeld, Ph.D.
Carlos Caldas, M.D.
Cancer Research UK Cambridge Institute
Cambridge, United Kingdom
carlos.caldas@cruk.cam.ac.uk

Since publication of their article, the authors report no further potential conflict of interest.

DOI: 10.1056/NEJMc1306040

Globalization, Climate Change, and Human Health

TO THE EDITOR: The scholarly review of globalization and climate change by McMichael (April 4 issue)1 emphasizes the associated economic, social, demographic, and environmental threats to human health and suggests steps to mitigate these changes on a global scale. Although McMichael also mentions the effects of climate change and globalization on the geographic range of vectorborne infections, he does not alert readers to sobering examples of the emergence of tropical infections in the temperate zone (Table 1).

Globalization and climate change promote the emergence of these infections synergistically. Globalization increases the number of infected travelers and the accidental importation of infected vectors. Climate change warms the environment to temperatures that permit reproduction of the vector and parasite. Increasing

<table>
<thead>
<tr>
<th>Tropical Infection</th>
<th>Areas of Local Transmission</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dengue</td>
<td>Key West and elsewhere in Florida; Brownsville, Texas; France; and Croatia and other areas of southern Europe</td>
<td>A total of 5% of Key West residents have antibodies against dengue, and locally transmitted infections have been reported in other counties, including Miami–Dade; 39% of residents in Brownsville have antibodies against dengue</td>
<td>Jordan et al.,2 Ramos et al.,3 Butler4</td>
</tr>
<tr>
<td>Malaria</td>
<td>Greece</td>
<td>The CDC recommends precautions (level 1) for persons who travel to Greece, including consideration of drug prophylaxis for travel to some regions</td>
<td>CDC5</td>
</tr>
<tr>
<td>Chikungunya</td>
<td>Italy and France</td>
<td>Hundreds of persons have been infected in Italy</td>
<td>Butler4</td>
</tr>
</tbody>
</table>

* CDC denotes Centers for Disease Control and Prevention.