2010

A Procedure for Standardizing MLC Quality Assurance for Elekta Linac

K. Yan
Thomas Jefferson University and Hospitals

M. Studenski
Thomas Jefferson University and Hospitals

H. Liu
Thomas Jefferson University and Hospitals

I. Buzurovic
Thomas Jefferson University and Hospitals

Y. Cui
Thomas Jefferson University and Hospitals

See next page for additional authors

Follow this and additional works at: https://jdc.jefferson.edu/bodinejournal

Part of the [Oncology Commons](https://jdc.jefferson.edu/bodinejournal)

Let us know how access to this document benefits you

Recommended Citation

DOI: https://doi.org/10.29046/TBJ.003.1.018
Available at: https://jdc.jefferson.edu/bodinejournal/vol3/iss1/19

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University’s [Center for Teaching and Learning (CTL)](https://www.jefferson.edu/ctl). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Bodine Journal by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
A Procedure for Standardizing MLC Quality Assurance for Elekta Linac

Authors

This accepted abstract is available in Bodine Journal: https://jdc.jefferson.edu/bodinejournal/vol3/iss1/19
A Procedure for Standardizing MLC Quality Assurance for Elekta Linac

Yan, K.,1 Studenski, M.,1 Liu, H.,1 Buzurovic, I.,1 Cui, Y.,1 Shabason, L.,1 Harrison, A.,1 Yu, Y.,1 Hossain, M.,2 Xiao, Y.1

1Department of Radiation Oncology, Thomas Jefferson University and Hospitals, Philadelphia, PA
2Fox Chase Cancer Center, Philadelphia, PA

Purpose
As specified in TG142, MLC position accuracy needs to be tested on weekly/monthly basis, with 1mm tolerance. This study focuses on developing techniques, hardware and software tools for implementation of MLC QA tests for Elekta Linacs.

Method and Materials
This process was tested with an Elekta Synergy S, Beam ModulatorTM, which has 40 leaf pairs of 4mm width (maximum 16 cmx21cm field size). Based on the machine characteristics, two picket-fence IMRT plans were designed: one has 5 2cmx16cm strips separated by 2cm gap; the other has the same setup with individual leafs intentionally displaced by ±1mm, ±1.2mm, etc. Both plans used 6MV x-rays and 50MU on each strip. We overcame the limitation of Xio planning system in generating picket-fence IMRT plan by modifying leaf positions from a DICOM RT plan file. In-house software was executed to validate the files before imported into Record and Verify system (Mosaiq) for delivery. Radiographic images were acquired using Kodak XV films. The borders of a 16 cmx21cm light field were first traced on the film. These reference lines helped reduce the orientation errors during image registration. Two sets of films were exposed with full buildup. After development, each film was digitized with 0.06mm resolution using a high-resolution scanner. The images were then imported into Matlab. Inhouse code was used to detect leafs exceeding the 1mm threshold.

Results
The plans were delivered smoothly. Leaf positions in the first image were used as baselines, instead of using reference leaf positions from the same exposure. This reduced systematic errors. After image registration, leafs displacing from the baseline by 16 pixels (1mm) or more were detected.

Conclusion
This efficient procedure provides a sufficiently accurate test for MLC positioning reproducibility. It is a simple and straightforward procedure that can be used for routine MLC position checks.